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The purpose of this conference is to bring together teachers in-
terested in mathematics - arithmetic through calculus - to study problems
in the teaching of mathematics and to learn new uses of mathematics
in various fields of endeavor.

All who are interested in enriching the work being done in mathe-
matics and in obtaining a broader concept of the place of mathematics
in our present educational program are invited to attend and participate
in the activities of the conference.
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six study groups daily. In addition, a mathematics laboratory course
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A DEVELOPMENT OF ASSOCIATIVE ALGEBRA
AND AN ALGEBRAIC THEORY OF NUMBERS, I

H. S. Vandiver

INTRODUCTION: In a number of articles we hope to publish under
the above title, it is planned to treat the topics mentioned in a bit
unusual way. In the first place, what we shall mean here by the algebraic
theory of numbers is the treatment of number theory by means of the
methods of abstract algebra rather than by the methods of analysis and
geometry, although at times some of the latter may be employed. On
the other hand, by the theory of algebraic numbers we shall mean the
classical theory of numbers based on the arithmetical properties of
the zeroes of a polynomial f(x) with rational integral coefficients
and the generalizations of this theory.

In future papers, we shall show that abstract algebra may be applied
to even some of the most elementary parts of number theory to obtain
results which appear new. An instance of this is well exemplified,
using semi-groups, in an article by M. W. Weaver (This magazine,
“Co-Sets in a Semi-Group”, Vol. 25, pp. 125-36, (1952)). On the other
hand, we shall generalize patterns well known in number theory so
that it is possible to obtain new developments in abstract algebra.

1.

THE NATURE OF OUR POSTULATES

In the account in the present paper we aim to start close to the
beginning of things by setting up a system of postulates for the in-
troduction of associative algebra which postulates are different from
those usually given. Here we have in mind, among other things, the
fact that, as far as I have been able to find out, many secondary
school students are alienated from arithmetic and algebra because
the only way they learn these topics in that period is by following
a set of rules which are never stated explicitly by the teacher; and
the only way the student ultimately is able to carry on the algebraic
manipulations correctly is due to the fact that he has heard so many
times from his teacher that certain manipulations are wrong. This
does not matter much in the case of a student who would never be in-
terested in mathematics, in itself, under any circumstances; but it

233
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is rough, it seems to me', on the student of innate mathematical
ability.

It may be argued that we should be content in learning elementary
algebra to become acquainted with the manipulations involved in it
Jjust the same way we learn, when children in elementary schools, the
use of language. Most of us learn language with little or no knowledge
of grammar. I find no fault with this view point concerning the learning
of language except that it might happen that a few of the students
would have a natural flair for such things as philology. In this case
his latent abilities in this direction might not be developed at all
until he would reach college. That is, it seems to me, he would be
at about the same degree of disadvantage as a young person of natural
mathematical ability. It might be best for the teacher to introduce
occasionally a few explicit postulates in arithmetic and algebra for
the benefit of the more gifted youngsters.

We can now indicate our reasons for employing the types of axioms
we introduce here. Consider such an elementary problem as reducing to
its simplest form the expression

(A) 6x = (2x + (2x + (x + 2x) + (2x + (x + 1))).

One of the usual procedures would be to say that this expression equals
what is obtained from it by substituting x + 1 for (x + 1), then to
substitute 3x + 1 for (2x + x + 1), etc., until we reached the stage
where we have 6x minus an expression contained in a parenthesis and
the inside expression contains no parenthesis. Then our problem is
a little more complicated. We cannot remove the parenthesis by a sub-
stitution immediately in the same manner as before, but the student
learns how to handle this minus sign in front of the parenthesis after
probably many trials and errors on his part. After learning such rules
and ideas in secondary schools, he goes to college and is possibly
introduced to a textbook in which perhaps near the beginning it is
stated, using symbols, that the postulates governing algebra are as
follows: The Commutative Law of Addition; the Closure Law of Addition;
the Associative Law of Addition for three elements; if equal numbers
be added to equal numbers, their sums be equal; and similar laws
governing multiplication; and the Distributive Law. It seems to me
that this cannot appear to him except as something entirely new; and
in my opinion, it is quite a far cry, using such postulates, to justify
the different types of substitution employed in the specific example

'In my own case I recall that the only thing that interested me when I was
taught arithmetic was the rule for finding the greatest common divisor of two
positive integers, which happened when I was about eleven years old. Later,
I think, I was first attracted to geometry possibly because some reasons were
given for our steps in setting up proofs. This was in spite of the fact that
I had very little ability in geometry. It was only in my second year in high
school that I became interested in algebra.
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just treated; and even if this were done, the student, at the stage
mentioned, could follow little, if any, of the necessary arguments.
Our point of view here is exactly the opposite. We start with a set
of postulates (1 through 6, including a powerful postulate of substitu-
tion) such as the student learns them in elementary schools, and we
derive from these postulates not only all the laws just mentioned
but others also. In this way we develop elementary algebra, and at
the same time we find that we have developed an infinity of finite
algebras., In order to carry out these ideas, we generalize familiar
notions and specialize other notions. For example, we do not start
off with an abstract notion of a general set as used by most math-
ematicians. We start with ideas found in common experience and speak
of a set of marks or symbols. Having stated certain postulates and
developed abstract systems based on them, we later consider modifying
these properties so that we cannot regard our ‘“ sets” as sets of symbols
as, for example, in the theory of real numbers. On the other hand, we
generalize ordinary notions of equality. The statement a = b is often
taken to stand for a is b. Probably the substitutions we went through
in connection with our elementary problem referred to may be justified
on such a basis. However, from our point of view 4 + 2 = 6 does not
mean 4 + 2 is 6. 4 + 2 will be regarded primarily as a finite ordered
set of symbols and as such would be different from 6. So in this way
our equality sign seems to have more general significance than usual;
in fact, we could conveniently use another symbol, such as T, for it.

To state conveniently the kind of postulates we need to carry out the
ideas before mentioned, we shall in part 3, Foundations of a Theory
of the Natural Numbers and Certain Finite Arithmetics, using as far
as possible language that we hope will be intelligible even to a non-
mathematician, define finite ordered sets of symbols that we shall call
“combinations,” (cf. the definitions following (3) and footnote 9);
thus, (A) is a combination. We do not, however, attempt to describe
all the possible methods we shall employ in selecting symbols to de-
note other types of symbols or sets of symbols, so that our description
of procedures with symbols is for that reason incomplete, if not for
other reasons.

Another peculiarity of the theory is the fact that we do not say
such an expression as

a+t+ b+
is an abbreviation for

((a + b) + ¢).

(This is only possible since we are confining ourselves to associative
systems). If we did, then from the point of view we are using, this
would make things very difficult and complicated for us. We would
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not only have to define such an expression as the second one as being
a combination, but also the first one as a finite ordered set of symbols
which was written as an abbreviation of the second. We shall attempt
to define “‘combination” in such a way that each of the last expressions
will be recognized as such.

2.

THE NATURAL NUMBERS, DENUMERABLE SETS,

AND SYSTEMS OF SINGLE COMPOSITION

Before discussing the foundations of algebra, a system of double
composition, we introduce a system of single composition which from
our standpoint is much simpler. The natural numbers are defined, in
this section, but symbols such as + and X are not employed in connection
with them.

We start with the notion of a set of symbols or marks. We shall
also refer to them as elements. We then consider some of the properties
of said symbols that we observe from ordinary experience. As we bring
up the idea of each symbol in succession in our mind, we shall refer
to an immediate predecessor of a symbol and an immediate successor
of it; the first symbol (with no immediate predecessor) and the last
symbol (with no immediate successor). We illustrate this mental process
by means of

(1) a, b, ¢, d, e, f

in which we refer to a as the first symbol or element in the set; f is
the last element; d is the immediate predecessor of e in the set; and
¢ is the immediate successor of b in the set. Writing the symbols in
this manner is quite suggestive of the order of thought we have em-
ployed. If we had illustrated our process by means of a circular order,
correspondence is not so clear. In

(1I1)

we would immediately have to define the first term or the first element,
as a, and f as the last element; otherwise, we would have to consider
the repetition of elements. This leads to the idea of different symbols
and the same symbol. In view of these ideas, we shall refer to a set
of symbols such as

(I11) r, s, r, t, v, s
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as a set ‘“‘with repetitions.” This we can only illustrate by saying
that a and b are different symbols and a is the same symbol as a.?
Hence, our writing the symbols on a line suggests all the concepts
we have talked of, and we will call such a set a set of linearly ordered
symbols. We refer to (I) or (III) as a finite (linearly) ordered set
of symbols. Such a set is non-null and the first term may also be the
last. Referring to any set of symbols, we shall speak of replacing a
symbol in it by another or by itself, or of selecting certain symbols
from a set of symbols. If a set S is such that by taking any symbol
contained in it and comparing with any other symbol in it (assuming
it includes another), then said symbols are different, S is said to be
a set of different symbols, or a set with no repetitions. If we have
a set S' with an element, say @, and no other, then S’ is also said
to be a set with no repetitions.

To introduce the ideas of correspondence and counting, we extend
the notion of ordered sets of symbols by indicating the familiar idea
in ordinary experience of a set of sets of symbols. Thus, we can speak
of a; b; ¢, d, e as a finite linearly ordered set of sets of symbols
in which the set b is the immediate successor of the set a; ¢, d, e
is the immediate successor of the set b, with ¢, d, e being the last
set in this set of sets. We consider the symbols

0,1, 2, 3, 4, 5, 6, 7, 8, 9,
known as digits, and the finite linearly ordered set
(1Iv) 1, 2, 3, 4, 5,6, 7, 8, 9.

The last element in this set is 9, but we may, without using any ex-
plicit notion of addition, change the status of this element by introc-
ducing an immediate successor of 9. To do this we employ the digit 0
and take as the immediate successor of the set 9 the set 10; as the
immediate successor of 10, we take 11, and so on, in line with the
usual decimal representation (not defined here). We shall denote this
extended set by N.N. From this standpoint we shall refer to any of the
finite ordered sets in N.N. as a natural number, and we will refer
to the whole set as the set of natural numbers. The natural numbers
satisfy the following postulates:

Postulate I. 1 is a natural number.

Postulate II. FEach natural number has an immediate successor in
N.N.

This Postulate II transcends our ordinary experience in connection
with the symbols in the sense that the set of natural numbers has no
last term; and here we seem to be introducing a definitely mathematical

2Note that we are not introducing any idea as yet of the equality or inequality
of symbols. From our standpoint this will be a much more general idea. We use
the term “different’”’ here, in place of ‘‘distinct,” as the latter will be
used later to indicate unequal symbols.
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idea.

As is usual in algebraic discussions, we shall use the idea of
“denoting.’” We use a symbol to denote a set of symbols, or, in par-
ticular, a symbol itself; and in any statement made or relation dis-
cussed here, we may replace any set of symbols by some letter denoting
it and vice versa. In particular, a symbol may denote itself. However,
as stated in our introduction, we do not attempt to set up a complete
set of rules governing denoting.

We assume we have a set of symbols S. We shall now speak of affixing
subscripts to symbols, which latter we have already selected; thus,
we obtain a; from @ by affixing a subscript i. Next we will speak of
affixing an additional subscript, say j, such that we obtain a;;, etc.
Suppose we have a set of symbols and select an element therein. To
this element we affix the subscript 1, select another element and
affix the subscript 2, etc., until we have reached a natural number
denoted by n as a subscript. Further, suppose there is no element of
our original set onto which we have not affixed a subscript. We then
say that our original set S is finite and contains n elements. Taking
any symbol, such as a, we shall say that we may denote the elements
of S by ay, a,, ..., a,. If we have a linearly ordered set of symbols
with no last term, such as the set of natural numbers, we shall call
such a set infinite.3 We now assume that all the sets discussed here
have the property that the elements of any one may be denoted by a,,
Gy, Qgy weey where the subscripts range over the set (N.N.) or over
the set 1, 2, 3, ..., n, where n denotes some natural number. In other
words, the sets considered by us are denumerable.3

Sub-sets. Consider a set S, consisting of the elements a,, where
i ranges over the set 1, 2, ..., n, n denoting a natural number, or over
the set of natural numbers (N.N.). Suppose it is possible to select
from S; in some fashion a set S, consisting of different symbols,
then S, is said to be a sub-set of S,. If there is a natural number
denoted by k such that a, belongs to S;, but not S,, then S, is called
a proper sub-set of S,. Since the elements of any denumerable set can
be denoted by a set of a’s as above defined, then the definitions
above apply to any denumerable set of symbols. '

31t seems that there are two different notions about enumerating the
elements of sets with repetitions. Thus, it would appear that some writers would
say the set (III) contains four elements, but six elements ‘‘counting repeti-
tions.” If we follow out our definition, howeveér, in counting the elements of
(III), we would obtain a set ri, sp, rg, ty vs, Sg, which also by our defini-
tion contains six elements. However, it is apparently consistent with our pre-
vious definitions to say that (III) contains four different elements. If the
reader thinks that we are unduly preoccupied with sets having repetitions, we
wish to point out that most of the sets we talk of in this article contain them.
Thus, from our standpoint ({a + b) + ¢) + d is merely a finite ordered set of
symbols; and we would be in a bad way, as far as our theory is concerned, if
we could not say that this expression contains two parentheses.
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Suppose we have a set of symbols S,, whose elements are denoted by
a,, a, ..., a,, and another set S,, whose elements are denoted by
by, by, ..., b,. A correspondence or mapping is a rule which determines
for each element a; of S, an element b. of S, which is said to correspond
to a, and such that no different symﬂol in S, corresponds to a;. Con-
versely, each element of S, is the correspondent of at least one symbol
in S;. In particular, the correspondence is said to be one-one when
a; corresponds to b; but to no different symbol in S,, and b, corresponds
to a, in S, and no different symbol in S,. For example, if we have the
set a;y, ay,, @y, ay,, and b, and b,, we can indicate what we call a
two-one correspondence which may be written symbolically as

a4y @y
~, 4
1 -2

a‘z a

1

22

If we have a set a,, a,, ag, a, and b,, b,, by, b,, then we may indicate
a certain one-one correspondence between these two sets by

a;>b,,

i ranging over 1, 2, 3, 4. Also, the first set is said to be mapped on
the second and conversely. We employ a similar idea in connection with
infinite sets.

In referring to an ordered set, we shall speak of a symbol contained
in it and then obtaining a type of sub-set by selecting the symbols
following this in order as they appear in the original set. Thus, we
may select the element ¢ in (I) and obtain a set by taking the immediate
successor of ¢ in (I), namely d, and the immediate successor of d,
namely e, and obtain, if we wish to use e as the last element of one
set, the set ¢, d, e. But d, e, a 1s not a set of this type.

We now introduce and discuss rather informally a system of single
composition. Consider a finite set of symbols without repetitions which
we shall call S. Suppose S contains n elements. Consider another set
S, containing n elements which is obtained from S by selecting elements
in the first set. If S; contains no repetitions, we call S, a permutation
of S and vice versa. Thus bcad is a permutation of abcd. We now introduce

a symbol
{a b ¢ d]
b ¢ a d°

In order to set up a system of operation with such symbols, we first
note that we can consider the colums which appear in it. We will state
that the first symbol is equal to any symbol obtained by interchanging
the colums; thus
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{a b ¢ é] _(c b a ﬂ
b ¢ a d [a c b d’

More generally we set

[a1 Gy oo an] [ai1 Qi wee ain}
' ' R I ' ] ' ’
01 a2 cee @ a. a. oo Q.

n 11 lz 1

where each row in each symbol is a permutation of the original elements

ay, ay, ..., a,; and if a, =9, t= 1, 2, ..., n, then a;t = a}. Let

ay ay ... a, ay ay .o a, ay ay .. a,
Sl = ' [ 1| SZ = " " "y T = " " /AN
n n

a; a, .. a, ay a; «u. @ ay a; «.. @
We call T the product of S, and S, and write
S,S, = T.

In the above, as before, each row in each symbol is a permutation of
p
@y, @, ..., a . Concerning the equality symbol =, it seems reasonable
to postulate then that if S, = Sz’ then S = S,; and also S, = S,. We
shall call these symbols, such as S,, that we have been using, substltu-
1 g
tions. We note, in particular, there is a substitution

[a‘ @y e aﬂ

ay @y «e. @ '

This substitution is called the identity substitution, and we shall
denote it by I. We note also that if we multiply S, by

we obtain I. The second of these substitutions is called inverse of
the first, and it is usually denoted by S:'. We note also that

(1) S7's, = 1.

We write down what we call a product of three substitutions as
S S S We can interpret it as the substitution obtained by taking
the product S,S, and taking this resulting product with S;. This gives
us the 31ngle substltutlon T,, and we write §,S,S, f Using our
definitions, we find that if we take the product of S tlmes the single
substitution which equals S,S; that T, is also obtained; and we write
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this result as
(8182)33 = 81(8233).
This is called the associative law for three substitutions. In view of

(1), we find that corresponding to any given substitutions S and T,
there is a substitution Sx such that

(2) SS. =T,

x

and an E% such that

n

(2a) S S =T,
y

In view of this property, the associative law, and the fact that the
product of any two substitutions is a substitution as well as two
substitutions being equal or unequal, these conditions being mutually
exclusive, the set of substitutions on n letters is said to be a group.
If the properties (2) and (2¢) do not necessarily both hold in a set
of elements which have the other properties mentioned, such a set is
called a semi-group. The formal definition of a semi-group and group
in general will appear in a later paper.

3.
FOUNDATIONS OF A THEORY OF THE NATURAL
NUMBERS AND CERTAIN FINITE ARITHMETICS

In this part we shall develop a set of postulates concerning certain
symbols in a system, which system will include as special cases not only
elementary arithmetic but various types of finite arithmetics.? One
of the principal reasons we develop these systems simultaneously is
to justify the use of the word existence in connection with the use
of systems of double composition which cannot be embedded in any ring5

4The theory which I shall consider here was developed mainly during
seminars on abstract algebra and number theory which I gave at the University
of Texas during the last 20 years. During this period, I also discussed some
of the ideas in personal conversations with various mathematicians. As a
result of this, I am indebted for suggestions and corrections to F. C. Biesele,
A. Church, J. L. Dorroh, 0. B. Faircloth, H. C. Miller, J. B. Rosser, J. M.
Slye, W. J. Viavant, and M. W. Weaver. However, none of these individuals
should be held responsible for any errors or obscurities which appear in this
paper since the decision to write it in the form in which it now appears was
entirely my own.

These ideas were discussed in part in the following papers by the writer:

1. “Cn the Foundations of a Constructive Theory of Discrete and Commutative
Algebra,” Proc. Nat’l. Acad. Sci., Vol. 20, 579-584, 1934.

2. *“Note on a Simple Type of Algebra in which the Cancellation Law of
Addition does not hcld,” Bull. Amer. Math. Soc., Vol. 40, 914-920, 1934.

3. “On the Foundations of a Constructive Theory of Discrete Commutative
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(the terms ring and embedded being employed here as usually defined).
We now consider a set of symbols

(3) Cl’ Cz, C3, s o0 0 000 00

Denote some natural number by k. Then in (3) we define the immediate
successor of Ck as Ckl, where k' is the immediate successor of k in
N.N. We shall now introduce in addition to these symbols a symbol +
(called a plus sign), and X (called a multiplication sign), and (,
called a left parenthesis symbol, and ), called a right parenthesis
symbol. We shall define the term combination® in connection with the
symbols.

Definition. Any of the symbols in (3) or any symbol denoting any of
them is said to be a combination. If A denotes a combination and B
also, then A + B is said to be a combination, also A, (A) and AX B,
A sub-combination of a combination A is a combination consisting
of a symbol contained in A or else such a symbol followed by others
in order as they appear in A.

Definition, If A denotes a combination, then (A) 1is called a
parenthesis enclosed combination.

Definition. A closed combination C is a combination such that if
any + sign occurs in it, there is a sub-combination of C which contains
this + sign, and which is also a parenthesis enclosed combination.
If a combination contains no plus sign it is said to be closed.

We introduce a symbol of relation with the combinations, =, called
equality. In the following statements, each capital letter or capital
letter primed denotes an arbitrary combination as above described or
a combination limited in character by the conditions in the statements.
A small letter denotes an arbitrary natural number, or else a natural

Algebra,” Proc. Nat’l. Acad. Sci., vol. 21, 162-165, 1935.

4. “On some Simple Types of Semi-Rings,” Amer. Math. Monthly, vol. 46,
22-26, 1939.

The idea of using the postulate of substitution as employed here was
defined by the author for semi-rings in his reference last mentioned, p. 26,
and for semi-groups in “The Elements of a Theory of Abstract Discrete Semi-
Groups,” Vierteljahrschrift Natur. Gesell., Zurich, v. 46, 121-123, 1940.
It was also used by Stephen A. Kiss in his botk, “Transformations on Lattices
and Structure of Logic,” New York, 1947, for semi-groups and more general
systems, and as a concept of logic, as applied to arithmetic by Birkhoff and
MacLane, “Survey of Modern Algebra,” pp. 3u-31, New York, 1941. From the
point of view we use here, the substitution postulate is a little complicated
since we are trying to take strict account of all the parentheses that appear in
systems of double composition. I imagine that this substitution principle has
been stated by a number of other authors, but I have not yet noted where.

61t does not seem to be the usual thing among writers along these lines
to define combination as we do here. The idea seems to be that if the closure
law holds, then we can always replace a combination by an element of our set
which it is equal to. From the theory we are using, however, this does not
seem possible, as we do not assume the closure law but prove it (Theorems 10
and 11) by means of our postulates.
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number limited in character by the conditions in the statement. An
equality is also called a statement..

Postulate 1. (Identity) A = A,

Postulate 2. (Parenthesis) (A) = A.

Postulate 3. (Substitution) If A = B and D = C, where C denotes a
sub-combination of B and B' denotes the combination obtained from B
by putting D in place of C, then B’ = A, provided that if C is immed-
iately preceeded by or immediately succeeded by an x sign in B, then
C and also D must be closed combinations.

Postulate 4. (Induction) For each natural number n let there be
associated a statement denoted by S(n). If S(1) holds and if it follows
that if S(a) holds, then S(a') holds, where a¢' is the immediate successor
of a in the set of natural numbers, then S(n) holds for each natural
number n.

Postulate 5. (Addition) If n denotes a natural number and n' denotes
the immediate successor to this number in the set of natural numbers,
then

C +C, =C .,
n

n 1
Postulate 6. (Multiplication)
C, x (C, + C').= C, xC, +C_.

a

C xC =¢C

a 1 a

We may then prove the following (proofs omitted except for Theorems

6&7):7

Theorem 1. (Symmetry) If A = B, then B = A,

Theorem 2. (Transitivity) If A = B and B = C, then A = C.

Theorem 3. (Composition under addition) If A = B and C = D, then
A+C=B+0D,

Theorem 4. (Composition under multiplication) If A = B and C = D,
and if each letter denotes a closed combination, then AxC = BxD,

Theorem 5. (General Substitution) If E = F and G = H, where G
denotes a sub-combination of E, and E' denotes the combination obtained

7We may employ as postulates our present Postulates 1, 2, 4, 5, and 6, and
also employ our present Theorems 1, 2, 3, and 4 in liew of the Postulates 1-6,
which we have used here. It may be shown that the two sets are equivalent.

It may be noted that it is often very difficult to verify that a given
system has the property stated in Postulate 3. To indicate this we might con-
sider the introduction of the negative integers by means of ordered pairs
by the usual method. Verification that combinations of these ordered pairs
of natural numbers satisfy Postulate 3 would appear difficult, if not im-
possible. However, we shall show elsewhere that using a certain type of
isomorphism, as applied to the natural numbers only, we may adjoin zero,
the negative numbers, and the rational fractionms.
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from E by putting H in place of G, then E' = F provided that if G is
immediately preceded by or immediately succeeded by a X sign in E, then
G and H must be closed combinations. Similarly, if G is a sub-combination
of F and F' is obtained from F by putting H in place of G, then E = F'
with the above mentioned restrictions on G and H.

Theorem 6. (Commutative law of addition)

(4) Ca * Cb = Cb * Ca'
Proof: We first show that

(5) C,+C, =¢C, +C

We note first that (5) holds for 1 in place of a, since
G+ G =G+ C
in view of Postulate 1 and the fact that the expressions on each side

of the equality are combinations. Hence, the first condition in Postulate
4 is satisfied. Using the second part of Postulate 4, we assume

Cp + G = Cp+ Gy
and employing Postulate 1 and Theorem 3, we have
(6) C,+C +C, =C, +C +C,.
We then note that Ck + C, is a sub-combination of each of the com-
binations in (6) by definition. Now introduce C, + C; = C,' by Postulate
5. We then make a substitution on each side of (6) by Theorem 5,

employing the last relation, and we have (5) with k' in place of a.
The relation (4) holds then for 1 in place of b. Assume

C, +C, =C, +C,.
The use of Theorem 3 and Postulate 1 gives
C, + Ck +C =C, +C + (.
In view of (5) and Theorem 5, we obtain
C, +C, +C, =C, +C, +C.
Whence, by Postulate 5 and Theorem 5, we find
C, + G = C,v +C,

which by Postulate 4 gives (4).
Theorem 7. (Associative law of addition).
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(7) (A+B) +D=A+ (B+D).

Proof: The proof is quite simple because of the character of our
particular set of postulates. Since A + B+ D, A + B, and B + D are
combinations, then by Postulate 1 we have

(8) A+B+D=A+B+ D
and by Postulate 2 we obtain
A+B=(A+B), and B+ D = (B +.D),

Since both A + B and B + D are sub-combinations of A + B + D, we may
take (8) and employ two substitutions, using Theorem 5, and obtain (7).
Theorem 8. (Associative law of multiplication).

(AxB) xD = Ax (BxD),

where A, B, and D denote closed combinations.®
Theorem 9.
CyxC, = C,.

Theorem 10. (Closure law of addition). If a and b denote given
natural numbers, then we may obtain a C; such that

C, +C =¢C,

where s denotes some natural number.
Theorem 11. (Closure law of multiplication). With a and b defined
as in Theorem 10, we may obtain a C, such that

C, xCy = Cy,

where t denotes some natural number.
Theorem 12. (Commutative law of multiplication).

€, xC, = C, xC,y.
Theorem 13. (Distributive law).

8An alternative method for handling the symbols denoting combinations
would be to moaify a bit the property of denoting we have already mentioned,
namely, that if any set is denoted by a letter, then we can interchange the
set or letter in any statement or relation that we consider. We might say
that the last statemeuc was subject to the restriction that if A denotes some
combination, then it can be replaced by the combination that it denotes except
that if A appears in an equation where it is immediately preceded by or
immediately succeeded by x, then the combination in question must be a closed
combination. Using the modification just stated, we could have omitted the
exceptions in the statement of several of the theorems stated above.
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Cax(Cb + Ck) = Cax.Cb + Caka

and

(Cb + Cn) xCa. = Cbea + CnxCa.

We will now discuss informally several types of algebras obtained
from the C’s.

So far nothing has been said concerning inequality or equality among
the C’s. Let us assume that each element in the set (3) is equal to
C,, then our algebra of the C’s consists of one distinct element,
namely C,. We have from our postulates for the C’s the following:

c +C‘=C

1 1

and

C, xC, = C,.

Now instead of the algebra we just described, suppose we take the
set (3) and assume that for some natural number, not 1, and denoted
by m, we have, if m' is the immediate successor of m,

(9) C.t = C1

but that
C, #¢C,
1f k denotes a natural number in the set

2, 3, Lieieiee, m,

The symbol # reads “is unequal to’” and is here introduced in this
article for the first time. We also assume that either C, = Gy or
C, 7 C,, for a and b denoting any natural numbers, and that only one
of these two relations holds. Since, from the above, C, + Cu = C‘, we
obtain immediately by induction on a
C, +C, =¢C

a a’

that is, Cu acts as a zero element, as defined in elementary algebra,
in our set under addition. We also have from Theorem 9

C, xC, = C,,

and we easily obtain

n
Q

CaxC = C xC

R R a n
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by induction on a. This shows that C, also acts like a zero element
under multiplication.

We shall now consider a second type of finite algebra. Again refer
to the set (3) and assume that

C,, C,, Cy, C,, Cs, C,

12 Y21 Y3

are unequal but that C. = C_; then it follows from Postulate 5

37

Cg + C, = C, + Cy.
Yet, we cannot cancel the C,’s if we use the assumption already referred
to that any two C’s cannot be equal and unequal at the same time.

The algebra just described is illustrated by the following figure:

L ¢, C, Cy=G
Cq C,
CS

Let C indicate the operation of passing over a equal units of
distance in this figure and assume that Ca = C, if, and only if, the
operation designated by C, brings us to the same point as the operation
designated by Cy. Then it is clear that C; = C;, and starting with
C, the elements in (3) repeat in cycles, the elements in each cycle
equaling C;, C,, Cg, and C; in order. There is no element having the
property of the zero element in this algebra. Also, the cancellation
law of multiplication does not hold in general. Further, what corre-
sponds to division is not always possible. The latter two remarks apply
also to the algebra previously defined in connection with (9).

An algebra of a quite different character than any discussed so
far in this paper may be obtained by considering the following geo-
metric figure:

3 2

where the line at the top extends indefinitely to the right. Here we
have P, = P.; yet,
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Py + P, # Pg + Py,

that is, the composition law of addition does not hold. On the other
hand, it will be found that the cancellation law of addition holds;
and it is clear that the associative and commutative laws hold. This
brings out how important our substitution postulate is.

Development of the Arithmetic of the Natural Numbers: We now con-
sider the set (3) again, and resume our formal discussion. Assume that
C, = G, if, and only if, @ and b denote the same natural number. On
the other hand, if a and b do not denote the same natural number, we
write C, 7 C,. That is, we shall say that the elements in (3) will
now be assumed distinct. Also, we will now replace in any of the
relations, we have so far obtained, involving the C’s Ck by k so that
corresponding to

(10) C,+C, =¢C,
and

(11) C,xC, = C,,
we have

(12) a+b=4d

and

(13) axb = e,

and conversely.

The set (3) and the set of natural numbers as now used are said to
be isomorphic since there is a one-one (biunique) correspondence
between C, and a, which is written

o

Caé—}a,

and the relations (10), (11), (12), and (13) hold. From now on we
omit the symbol X, and write aXb as ab. We carry over the definition
of combinations of the C’s to corresponding expressions with natural
numbers replacing the C’s. Then we introduce the

Postulate 7. If a and b denote natural numbers, and if

a + k=0,
where k denotes a natural number, then we write
b > a, and a < b,

Also if either b > a or a < b, then we may obtain an s such that


http://www.jstor.org/page/info/about/policies/terms.jsp

1952) A DEVELOPMENT OF ASSOCIATIVE ALGEBRA 249

where s denotes a natural number. If e and f denote natural numbers,
neither = 1, then the statements

e = f, e> f, and e < f

are mutually exclusive, that is, one and just one of these relations
holds. Also, one and just one of the relations g = 1, g > 1 holds.

If a and b denote natural numbers, and if we introduce one of the
three statements

(14) a>b, a< b, and a = b

and employ it in connection with our postulates and established theorems,
and derive any two of the relations

d==¢,d>e, d<e,

where d and e denote natural numbers, this is said to be a contra-
diction; and the particular one of the three relations (14) which we
introduced is said to be false.

We have, if all letters denote natural numbers,

Theorem 14. If @ > b and b > ¢, then a > c.

Theorem 15. If a > b and ¢ > d, then a + ¢ > b + d.

Theorem 16. If a > b and ¢ > d, then ac > bd.

Theorem 17. If a + ¢ = b+ ¢, then a = b.

Theorem 18. If ac = bc, then a = b.

In our next article under the present title, we hope to discuss
the concepts9 and some of the properties of semi-groups and semi-rings,
and adjoin zero and the negative integers to the set of positive
integers. '

9Concerning the definition of combination given previously, which employs
a sort of induction, the combination may be defined directly as follows:

Definition. Consider a finite linearly ordered set of symbols containing
only symbols of the following type: symbols (letters) denoting elements in a
set of symbols described in (3), symbols of conjunction + and X, parenthesis
symbols ( and ) which will be called a left parenthesis symbol (abbreviated
L.P.S.) and a right parenthesis symbol (abbreviated R.P.S.), respectively,
and such that:

1. It contains at least one symbol denoting an element of (3).

2. It begins with either a L.P.S. or a symbol denoting an element of (3)
and ends with either a R.P.S. or a symbol denoting an element of (3).

3. It has no L.P.S. immediately preceding a symbol other than another
L.P.S. or a symbol denoting an element of (3) and no R.P.S. immediately pre-
ceded by a symbol other than an R.P.S. or a symbol denoting an element of (3).

4. Any two successive symbols denoting elements of (3) are separated by
just one symbol of conjunction.

5. There exists in it a one-one correspondence between the set of all
L.P.S.’s and the set of all R.P.S.’s such that:
(a) To each L.P.S. there corresponds an R.P.S., which follows it, and
(b) If either parenthesis symbol of a given pair lies between.the
two parentheses of the second pair, then the other parenthesis of the first
pair lies between two parentheses of the second pair.
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The ordered set just described is said to be a combination. Further, if
we replace any of the symbols denoting elements in the set of symbols described
in (3), which appear in the combination just mentioned, by symbols denoting
combinations, the resulting set is also said to be a combination.

The University of Texas
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FOUNDATIONS OF OPERATOR MATHEMATICS
Jerome Hines

Foreword:

The fundamental ideas in the theory of operator mathematics were
originally conceived through certain formal procedures occurring in
differential equations. Because of the fact that many non-differentiable
functions are integrable the modern treatment of operators has shifted
from the differential approach to the integral equation approach.
Unfortunately, the integral equation approach forces us to abandon
many powerful generalizing tools offered by the more direct differential
method. One such tool is the operator equation which relates operators
without reference to specific operands. Examples of such operators
are the ordinary sine, cosine, logarithm, derivative, etc.

The main purpose of this paper is to lay a foundation for the
algebra and calculus of operators from the differential approach.
The structure of this approach permits us to define operations .upon
operators. These definitions will arise from similarities between
operator and ordinary equations.

1. Operator Equations:

An operator is the representation of a transformation. An operand
is that which is transformed. An opus is the result of an operation.
We shall denote operators by capital letters and operands and opi by
small letters, except when noted in the context.

For simple cases it will suffice to indicate operation by following
the operator by the operand with no sign between them. To show the
equivalence of Aa and its opus, b, we shall use the equality sign, i.e.

Aa = b

This equation means that the result of applying the operator, 4, to
the operand, a, is the opus, b.

If the operand, a, is any function of a complex variable, say, for
which Aa and Bb are defined, and

Aa

]
o~

and
Ba = b

for all a’s, then A is said to be identical to B in the field, S,
of such complex variables.

251
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We shall denote the identity of two operators, A and B, for the
field, S, by

nen

1.1 A=2B

This equation is called an operator equation since its terms involve
only symbols on the operator level. Operator equations can be given
many properties similar to ordinary equations but they do not always
obey the laws of simple algebra.
Definition I:

Given the operators, P and Q, then P t Q is an operator defined by
the relation

(Pt Q)t =Pt + Qt (for all t)

Definition II:
Given the operators, P and Q, if Qt = r, has meaning, then PQ is
an operator defined by the relation

PQt = Pr

PQ represents successive applications of Q and P, provided Pr has
meaning. This may be extended to the successive applications of any
number of operators, e.g. PQRSt denotes the successive applications
of S, R, Q, and P. We add the convention that if a variable or constant
appears in the place of an operator in an operator equation with no
signs between it and its juxtaposed symbols, it shall imply the operation
of multiplication by that variable or constant. For example, ndB
implies multiplying the opus of A on b by the variable, n.
Definition III:

We define the upper right hand index of any operator, H, by the
properties

1.2 gt 2
1.3 2T
and

1.4 g £ oprte

I is generally called the identity operator, where It = t. This defini-
tion includes negative indices if they have an unique existence. It
immediately follows that, for p an integer, HP represents p-successive
applications of the operator, H.
Definition IV:

We define the null operator, (), by the relation

Qt = 0 (for all t)
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The following are results of these definitions:
a) If
At = Bt (for all t)

then, adding (or subtracting) equal quantities, Et, to both sides of
the identity gives us

At + Et Bt + Et

1l

whence, by Definition I,

1.5 Azt E

Bt E

Thus we can add (or subtract) identical operators to each side of an
operator equation.

b) If
4% B
and At and Bt are of the class, S, then

1.6 DA £ DB

where DA and DB mean successive applications of A and D, and B and
D. Thus we can operate from the left by identical operators on an
operator equation.

[[9)
oo]

c) Again, if A
and Et is of the class S, then

1.7 AE

BE

Thus, operation from the right by identical operators on an operator
equation 1is also permissible.
d) If there exists an operator, B, such that

BAb = A®b
b (for all b)

it

then, by equation 1.1, and Definitions II and III,
S .
1.8 B= 4"

i.e. B is the inverse of A.
e) (AB)~' is an operator such that
S
(AB)"'AB = I

Provided there exists an unique operator (AB)~' fulfilling the above
condition it follows from equation 1.1 and Definition II that
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1.9 (AB)-' 2 p-14-1

f) From the convention of multipliers in Definition II and the defi-
nitions of the operators, I and , it follows that the unit and zero
multipliers, 1 and 0, are given by

[[1%}

1.10 Q=0

and

1.11 121

g) From the above definitions it can also be easily shown that
1.12 1434

and

S
1.13 QA= Q

2. Higher Operator Forms:

In this section we shall speak of the symbolic formation of new
operators by the operation of specific operators upon others. Examples
of these new operators will be clearly defined in terms of simple
operators in this section but first we must extend our conventions.
The symbolic operation of the operator, A, upon the operator-operand,
B, will be denoted by A * B, When A * B is defined, then

2.1 A+Bd = e

will denote that we apply the operator, A B, to the operand, d,
obtaining the opus, €. Generally this will be quite different from
successive applications of B and A denoted by

ABd = e
Further,
A+BCd = e

will denote that we apply the operator, C, to the operand, d, and
then apply the new operator, A° B, to its opus to obtain the final
opus, e, For higher operator products we can employ two or more dots
arranged vertically to indicate intimacy of operation, e.g.

F+*G:HJb = ¢

denotes that we first apply the operator, J, to the operand, b. Then
a new operator is formed by symbolically applying first G to H, then
F to G: H, and this resulting operator is applied to the opus of J
on b, the final opus being c¢. This has an entirely different meaning
than

FGHJb = ¢

which only signifies successive applications of J, H, G, and F to b
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giving c.
Definition V:
If n is any complex variable, we define

n+*A 2 nA

This is the degenerate case where the symbolic operator n* A is equiva-
lent to the successive applications of A and n. It follows from defi-
nition V and equations 1.10 and 1.11 that

2.9 I 4% 4
and
2.3 0430

In order to build a function theory between operators in one variable
and a corresponding calculus it will be helpful to construct definitions
such that ordinary function forms such as log, sin, and cos when treated
as operators will be considered as independent of the variable in the
operand. Operators that may in this manner be considered independent
of the operand-variable will be called functors. Examples of non-
functor operators are log,, sin, and cos. In the theory of matrices
the derivative of an operator, A, is given by the expression

S
D-A=DA - AD

This equation might be used as the definition for the symbolic ‘‘deriva-
tive of an operator” except that the derivative of a functor would
not be equal to the null operator unless it commuted with the derivative.
Hence we would lose a much desired parallelism with ordinary calculus,
where the derivative of a constant is zero. A broader definition of
the derivative of an operator will be given in the next section which
includes the above equation as a special case but includes the condition
that the derivative of a functor is the null operator.

The following operator notations are convenlent:

S ..
2.4 L, —.H%@if
2.5 W8 f(x) = f(x + h) (for all f(x))
2.6 hAx = héx -1

We shall use ;5 , as defined above, as an operator although & is not

a capital letter.
It follows from Definition I and equations 2.5 and 2.6 that

WD, f(x)g(x) = f(x + h)glx + h) - f(x)g(x)

whence from 2.5
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2.7 hL\.xf(x)g(x) = th : [f(x)]th c lg(x)] = f(x)g(x)

Bear in mind that the dot indicates intimacy of operatlon, i.e. 5
applies only to the function immediately following the dot. h [g(x)}
has meaning since

Sx ¢ [g(x)] = hgxg(x)
Thus 2.7 can be written

2.8 hAxf(x)g(x) = hsx. [f(x)]hSIg(x) - f(x)g(x)

Il

We can consider f(x) as a multiplier. It is then an operator. hAxf(x)

can likewise be interpreted as an operator. Thus, by 1.6 we can consider
g(x) as the operand on the left side of 2.8. Similarly the right hand
member of 2.8 contains the operator, ;8, * [f(x)],%, and the operand,

g(x). Then by 1.1 we can rewrite 2.8 in the form
S
2.9 | pBf(x) =8 - [f(0)], 8, - flx)

From 2.6
A, [f(0)] = 48, [f(x)] = f(x)

or

CLF] = A, 0 )]+ f(2)
Substituting for ;8 * [f(x)] in 2.9 we obtain
A,ﬂx) 240, 0 [F(0)] + F)}8, - f(x)
whence, removing parentheses and rearranging terms,
2.10 Wt 13, 2 W0, f(a) = fays, + f(2)

2.10 is a necessary and sufficient condition of 2.6 derived by
transformations only of the type described in section 1. Therefore if
our product, f(x)g(x), were formally replaced by Fg(x), where F is an
operator and g(x) an operand, we could carry through to equation 2.10
without putting any restrictions upon F except that the operators,
pB,  F and ;o *F, have meaning.

Definition VI:
We define hAx. F by the relation

2.11 WA FE AR (RS, - P07

o1 ) .
where hbx , the inverse of hbx has the property
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2.12 R f(x) = f(x - h)

Due to the equivalence of 2.6 and 2.11, if Fx is an operator containing
the variable, «x,

2.13 hAx ’ Fx § Fx+h - Fx
and

S
2.14 WS, F, 2 Fo

By 2.5 and 2.11, th' F can be expressed by
2.15 W, FE ARSI 4 R

We must bear in mind that hAxP means successive applications of F
and hAx whereas hAx'F means application of the new operator defined
by equation 2.11. The same argument applies to 6, * F.
3. The Derivative of an Operator:

Consider the classical definition of the derivative:

h) -
3.1 Df(x) = Lim 205" ) - =)
h-ao h

By 2.4, 2.5, and 2.6 this becomes

DF(x) = Lyt D, f (%)
Whence
1

Definition VII
We define the derivative of an arbitrary operator, F, by the relation

S 1
3.3 D°F=(LhEhAx)°F

provided F is such an operator that the relation has meaning. Then
by 2.1 and Definition V

S 1 .- \ -
D+ F = (L =) [LAF,87" = (F,5, - F),8,"]

un

(1 -1 _ 1 _ =1
Lh [‘};hAthsx ;{(Fhsx F)hgx ]

3.4 D+ F

s=1 . _ -1
Ly - [% AW ] - Ly {%(Fﬁsx F)hgx]
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Definition VIII:
An operator, F, is called continuous if

S
L,F=1L,"FL,

for all continuous operands.
If F and DF are continuous, 3.4 becomes

S, (1 . -1 -
Ly [ﬁ hAx] Ly~ (F 8.0~ 1, [%(F WS, - F)h5x']

D-F =

3.6 D-F

. =1y - - (1 5 - -1
DL, * (F ,87") - L, [E(thx F)th]

th is continuous. If F is continuous, and L, '[%(F th - FW] also,

then
3.7 D F S DRL, 570 - Lyt [FF 43, = P Ly - 37
But
Lh hS;1 é DS;1
el

Thus 3.7 becomes

L § - ] 1 -
D-F2DF-L [E(FhSI F)]

The dot following L, may be dropped since %(F,ISx - F) is assumed

continuous. The equation finally becomes
F2pF-1, L(F,5 -F
3.8 D = - Lh};( Ro, = F)

Definition IX:
A linear operator, A;, is defined by

3.9 Aj(a £ b) = Aja ¢ Ab
where a and b are permissible operands for 4;, and

3.10 Apn 2 na,
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for all complex numbers, n.
The derivative of a continuous, linear operator is its differential
commutator since, by 3.8, 3.9, and 3.10

D A, ZDA, - L, LAy 43, - AD
Spa, - L, %Al(th - D
2 DA - AL, %hAx
3.11 DA, = DA, - AD

Thus we have defined the derivative of an operator so that it fulfills
the conditions discussed in section 2. It is easily seen that the
derivative of a non-linear functor is the null operator, according
to 3.8. The parallelism between operator calculus and ordinary calculus
is further borne out by noting that the derivative of a “complex
function multiplier” is merely the derivative of that function used
as a multiplier also.

4. General Series Representation for Operators:

We define the mean operator, yM;, by the relation

41 M, f(x) = f(y) = £(¥)
Y = Yo

If we attempt successive applications of _M, we obtain indeterminate

forms. So we define the symbol, M2, by the relation

» My
S
4.2 xMi = L(x-y) ny M
where L(x_y) denotes %i@ .
Then
2
xMx f(x} = L(x-y) ny xMx f(x)

flx) - f(xo)]

(z=y) v x[ x - x,

- L 1 (f(y) - flxg)  flyg) - f(xo)]
)y =y Y = % Yo = %o

0

-fo(x>]
X = X x_xo 0

MEf= L LM, f(0) -, Df(x)]
0

X - X



http://www.jstor.org/page/info/about/policies/terms.jsp

260 MATHEMATICS MAGAZINE (May-June

or s
4.3 e _ 1 [m - D]

where D" has the meaning of the nth derivative with x replaced by
0

X,

0‘

Similarly we define xMi by

3 8 2
4.4 xMx = L(x-y) ny xMx
i.e.
3 2
My Ly =L . oMy M f(x)
- 1
Loyl [ f(xo)] _ DF(x)]
(".Y)yxx_xo x - X x—xoxo

_, 1 [ﬂy) - flx)_, DF() f(yo) - flxo) xon(x)}
T (x-y) T T - —
AL (7 - %) y-xg (3 - %) Yo = %o

- %, D*f(x) }
0

X -

1 (f) = f(xg) _, Df(x)
Al

- 2 -
(x vxo) x -z

=L (M -% D*)f(x)
o

y X X
x xo

Iteration of this process gives

4.5 it 21t - Ly
rox x - x X n! %o
Substituting the corresponding equation for xMZ into 4.5,
S ! ! (M- o proty - L D"}
rox x = oxglx - oxg rx (n - 1) % n! %o

Substituting in the above equation with the corresponding equation

for xM:‘Z and continuing this process,

i
Mn+‘| § ]‘ - % xoD

xox (x = x )m ¥ i=1 1! (x - J\:o)""i‘M
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- n+i +1 08 - ot (x-x R
4.6  (x - z,) IMZ = (x = x) M, i§1 3 =
But
M f(x) = fl=) - flx)
x = xo
1
= — (1~ D°f(x)
x = xo o
or
1
4.7 2 [1- 0]
x X - x *o

Whence, substituting 4.7 in 4.6 and rearranging terms

% (x - xo)ixoDi

i=0 !

4.8 I N CIEIE LA AL
We see that this is an operator derivation of the Taylor expansion.
The operator on the right hand side of 4.8 we shall call the Taylor
operator of order, n, denoted by 7;.

Using the symbolir operation of both sides of 4.8 on an operator
possessing higher derivatives,

(x - xo)ixoDi' A

i

S
4.9 A=

n
: e )R

i
By a process similar to the development of equation 4.5 it can be
shown that the remainder, (x - xo)"+1xMZf1' A, can be put in the standard

Newtonian form involving the (n + 1)st derivative of the operator,
A, at some point, x,, between x and x . If

S

Q

4.10 Ly + [(x ==z )"t 4]
x X

1
n
Then the operator, A, is expressible by the series

(x - xo)ixoDi

!

1tn

4.11 A

oo}
=
1 =0
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ARITHMETIC - ALGEBRA - GEOMETRY
EACH AS AN AID TO THE STUDY OF THE OTHER

W. W. Rankin

We are in session as a group of teachers of mathematics.* This
being interpreted properly would indicate that we are concerned with
two aspects of mathematics - greater clarity as to the structure of
mathematics and its significance in our current living - better artistry
in classroom performance. At the level of our interest we may think
of mathematics as dealing with three important ideas: number, quantity,
and space (form).

Experience will warrant the postulate that all persons of normal
intelligence have some interest in: number, quantity, space. I should
hasten to add though that many soon lose their interest in the formalism
required in the traditional study of mathematics.

With nature continuously dramatizing through her periodicities the
process of counting, it is difficult to understand how it required
so long for man to develop a number system. The Hindu-Arabic numerals
along with the place value concept will always rank as a major contri-
bution to civilization. Europe was struggling along trying to study
algebra with Roman numerals until the 14th century.

For the purpose of discussion it might be good at this point to
build some very thin partitions between: mathematician - scientist -
industrialist (including business men and engineers). A mathematician
by virtue of his interests and his methods of work is much concerned
with the possible orders in which things (or ideas) fit together. Because
of his trustworthy methods and his fidelity of purpose he enjoys a place
of esteem wherever precision of thought is of importance. By the manner
in which he arrives at his conclusions and the meticulous care he
exercises in arriving at his conclusions he is able to make predictions.
This makes great savings of time and expense to the scientist and to
the industrialist. To be sure this adds to his stature and pride.

A scientist is committed to finding the actual order in which things
fit together. He is heir to the achievements of the mathematician
and has added his own developments in measuring. He speaks casually
of a millionth of an inch, a millionth of a second, and offers to industry
refinements of measuring which in turn industry passes on to the consumer
in better and more precise instruments and machines. Scientists have
just cause to be proud of the many secrets they have coaxed from mother
nature. The actual order in which things fit together gives to the

*A talk given to the Mathematics Institute at U.C.L.A., July 1951.
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scientist many opportunities to exhibit to laymen his accomplishments.

Industrialists (inclusing the business men and engineers) are necess-
arily given to finding the useful order of fitting things together.
They must fit things together in such a manner that they may sell their
product at a profit. In turn they are properly called upon to share
part of this profit as a subsidy to their benefactors - mathematicians
and scientists - for their contributions to the ‘“‘know how” of industry.
Industrialists are in constant contact with the work-a-day world. They
literally “make the wheels go round”. It is they who take our formulas
and turn them back into arithmetic before producing dividends, engines,
television sets, etc. It is they who provide our necessities, our
comforts and our luxuries. If this group chooses to speak of mathema-
tics as a ‘‘tool” we must accept this in the spirit and understanding
in which this is said, for to them it as a ‘‘tool” .

The above thin partitions were constructed to get teachers to realize
that in a class of 30 students, of those who are interested in mathe-
matics, the interest may have varying shades of these three aspects
of mathematics.

It is claimed by some that the wheel concept has been man’s greatest
emancipator from his inherent physical limitations. In human and in
animal life the essential and natural motion is hinge motion. But slowly
man discovered he could project himself out of his endowed and restricted
limitation of hinge motion into circular motion. Here we get a glimpse
of man in his early efforts to abstract. A little reflection on the
wheel’s place in our present technological society will give some in-
terest to this idea.

A new era was ushered into mathematics when Descartes (1637) abstract-
ed from the wheel (circle) X2 + Y2 = R®, It is precisely this abstract
quality of mathematics that helps to characterize mathematics and we grow
to feel the pull of its great power to set forth relationships between
ideas and to set them forth without emotional or economic disturbances.
These laws of nature, s = %gt?, x2/a? + y2/b% =1, y = e**, are but
exhibits of man’s abstractions. Countless other exhibits of abstractions
might be shown. As a matter of psychological considerations I feel that
more of our abstractions used in the class room should come from in-
teresting relationships of nature and current life situations. Our
textbooks need to provide more illustrations of actual and useful
relationships in the lists of problems.

The critical thinking which is possible within postulational systems
has given to man a very just reason to admire his own achievements.
It also gives him a type of mental security where he can determine the
restrictions placed upon his knowledge. He can say ‘I know this is true
within the limitation of the postulates I have assumed.” Some graduate
work in ‘‘Foundations of Mathematics” would serve to strengthen the
background for teachers in secondary mathematics. On the high school
level and early college work we shall not have opportunity to exhibit
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much of non-Euclidean geometry or Peano’s postulates for arithmetic,
etc. In the teacher’s mind though they do serve as good examples of
critical thinking.

The teacher, if an artist in the classroom must constantly have an
awareness of the possible - the ac¢tual - the useful orders of fitting
things together. There is always the temptation to be content with the
useful order. Students are coming up through the high school and on
through college mathematics with very little appreciation of what the
significance is of the one-to-one correspondence in mathematics and
hence fails to observe the relationships between arithmetic - algebra -
geometry - a lack of power results.

The function concept has been very well described as the ‘‘declaration
of dependence”. Things, ideas, and human affairs seem to be so inex-
tricably interrelated that we may very properly feel that the function
concept is the most important idea in the development of mathematics,
from both the abstract and the concrete points of view. We are inclined
to treat this as a special topic rather than an all pervasive idea
running throughout mathematics. Our techniques for treating this im-
portant concept need to be revised or better still completely reor-
ganized. It is through the function concept that we are able to abstract
and express in simple form so many relationships of: number, quantity,
form. Many of these relationships deal with problems of the daily affairs
of life. With a moderate amount of understanding of the language of
mathematics - symbols, graphs, etc. a person can gain a much clearer
idea of how precisely these relationships do fit together. Under our
present method of treating this whole idea students do not gain much
taste for or skill in using to full advantage the function concept.

Our traditional offering of the function concept to students is
through the following four methods: (a) verbal statement, (b) equation,
(c) graph, (d) table. Perhaps 80% of the emphasis is on the (b) equation
and the manipulative processes involved in the study of equations.
The story told by a quadratic function is much more instructive than
the quadratic equation. It may include the quadratic equation. This
is especially true if the quadratic function is also studied graphically.
If we ask a student to investigate a quadratic or cubic function - on
his own resources he has at least a chance to cultivate the ‘‘spirit of
discovery”. It is interesting to speculate - what he might learn as
compared with what he actually does learn in solving numerous quadratic
equations. In geometry the function concept is not consciously developed
and hence little power in mathematical analysis is gained in the tradi-
tional study of geometry. Students grow up to feel that geometric methods
are totally different from the methods of arithmetic and algebra. A
common comment from students after completing a course in geometry
is “I finished geometry in the 10th grade” (a severe criticism of the
teacher).

It seems to me that (c) the graph offers the best opportunity to
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present the function concept as well as many other aspects of mathema-
tics, and to bring about both a unity and a comprehension of mathematics
which we are unable to get by the partitioning of mathematics into
arithmetic, algebra, geometry, trigonometry, etc. The use of the hand
and the use of the eye offer psychological advantages which we need
to recognize and evaluate. Students can be trained to abstract many
relationships from the graph once he has an insight into the meaning
of a one-to-one correspondence - between arithmetic, algebra, geometry.
The graph tends to focus with clarity the concepts of number, quantity
and form. Indeed the graph does furnish a ‘““royal road to geometry”.
Some of our most difficult concepts such as: ratio, congruence, conti-
nuity, limit, periodicity find excellent expression in the use of the
graph. One of the real bottlenecks in the study of mathematics lies
in the study of three dimensions. Training in drawing three dimensional
figures and in constructing three dimensional models would serve to make
the proposed ideas much clearer, and in turn aid in making the ab-
stractions desired. Ask a student to graph E = %Mv?, E = destructive
force of a car M = mass = W/G, v = velocity. Then compare the value
of E for speeds of 20, 40, 60, 80 m.p.h. This abstraction could aid
greatly in promoting safe driving.

The complex numbers rapidly gained acceptance after Wessel (early
19th century) showed that they could be represented graphically. More
recently we observe they may be advantageously represented on wire
models. A student feels much more friendly (a necessary prerequisite
for satisfactory learning) towards complex numbers when he discovers
he can “put his finger” on a complex number. The uses of complex numbers
in physics and electronics and elsewhere when magnitude and direction
are significant, certainly points the way for more study of complex
numbers in elementary mathematics. The completeness it offers to many
ideas of algebra renders greater powers of abstraction.

Our daily doings are so completely arithmetical that the transition
into the general from the particular is more difficult than commonly
thought. Please hear A, N. Whitehead ““To see what is general in what
is particular, and what is permanent in what is transitory is the aim
of modern science”. The use of some adjustable instrument (geometry)
will aid greatly in establishing the “‘any” woncept. We need some very
simple aids with which we can bring the student to the “‘moment of
insight”. The model or instrument lingers to hold the attention long
after the spoken word has slipped away. To some this ‘‘moment of insight ”
comes quickly and vividly, to some it comes slowly and often very
vaguely. Clarity of understanding is closely related to precision of
statement, and for this reason I feel there should be frequent calls for
verbal statements. Because of the tempo of current living we must find
more artistic ways of presenting ideas, and by this I mean to include
ways and means for more rapid comprehension on the part of students.
At a recent meeting of our Committee on Coordination of Mathematics
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with Business and Industry we were told by consultants from industry
“you must move out beyond black and white and the spoken word, if
you are to get and hold the attention of your customer”.

May I offer you please the following striking story in symbolic
form setting forth some of the development of the ratio concept:

20/60 = 1/3 = .3333... = a/b = tan 0
(y, = ¥)/(x, - x,) = dy/dx

Here we may view the ratio concept as it evolved through 3000 years.
The 60 in the denominator of the first fraction is a Babylonian con-
tribution. They used fractions having only 60 or some multiple of 60
for the denominators. The second fraction with its 1 in the numerator
is an Egyptian idea. They used only fractions having 1 in the numerator.
The decimal fraction idea was largely that of Stevin (1685). The
remainder of the above story is too well known to relate here. In this
exhibit we find a close relationship between arithmetic, algebra,
trigonometry, analytical geometry, and calculus. It is as a silver
thread running through these subjects. A careful study of the many
ways devised to avoid fractions would be very beneficial to any teacher
of mathematics. It would build up a proper type of sumpathy for the
students who struggle with the ratio concept. As a part of this story
it should be noted that the dy/dx rode into mathematics on the back
of geometry as it was applied to the study of motion. By this I mean
on the back of analytical geometry. There is a tendency to pass lightly
over this dynamic aspect of mathematics. With this new dy/dx concept
most of the earlier mathematics was hastily verified and then the
mathematicians turned to find new worlds to conquer. And verily there
was a conquest, for more mathematics was learned in the second half of
the 17th century than had been known in the preceding 3000 years.
Not only had mathematics found a new way of thinking, but this readily
became a powerful “tool” for the scientists and the industrialists.

It will require skill, patience, and artistry on the part of the
teacher to find which of the many ““Teaching aids” are worthwhile and
how to make proper use of them. At present I should like to advise
these teaching aids be painted both green and red in order to give
the ““go” and the “stop” signals as to when to use them. It takes real
skill to abstract from these aids the mathematical principles associated
with the aids, and until this is done the teacher’s job lacks in clever-
ness and real worth.

From experience I would like to offer two very simple and quite
different illustrations of relating number, quantity, and form.

1. Use a plyboard wheel (about 15 inches in diameter) with a notch
in the rim to hold a piece of chalk. Roll the wheel along the chalkrail
against the blackboard. The chalk in the rim of the wheel of course


http://www.jstor.org/page/info/about/policies/terms.jsp

268 MATHEMATICS MAGAZINE

will describe a cycloid. The parametric equations (x = a(f - sin 6)
and y = a(l - cos ) can easily be developed after a little trigo-
nometry has been acquired. For the student in analytical geometry it
is possible and highly desirable that he obtain a friendly feeling
for the idea of parameter which he could do here. A more vivid present-
ation can be done in 10 minutes than can be done in 20 minutes without
this aid. It is extremely difficult for students to study motion from
hastily drawn figures on the blackboard. It is easy to repeat the
motion with an instrument if this seems desirable.

2. As a second illustration showing the interplay of arithmetic,
algebra, and geometry I will suggest this simple problem. It is known
that 3, 4, 5 will form the sides of a right angle triangle. Are there
other sets of consecutive integers? Algebra suggests that we set down
such a set as these: n -1, n, n + 1, applying the Pythagorean theorem
we have

(n+1D%2=(n-12+n?ornn-4)=0

n=4,n=0 (trivial). Thus leading us back to 3, 4, 5. In this clever
way algebra announces with assurance there is no other set of consecutive
numbers which will form a right angle triangle.

One other suggestion, please set, x° + y° = r2; now multiply both
sides by 77/4 giving (m/4)x% + (m/4)y? = (77/4)r? but with this simple
operation we show that the area of the circle on the hypotenuse is
equal to the sum of the areas of the other circles on the other two
sides of the triangle as diameters.

Duke University
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INFINITE SERIES AND TAYLOR AND
FOURIER EXPANSIONS

Robert C. James

1. Sequences and series of constant terms. One of the most funda-
mental and important problems of mathematics is that of approximating
some quantity which can not be exactly evaluated or exactly expressed
in the desired form. Examples of this are problems of finding an
approximate decimal representation for an irrational root of an equation,
evaluating trigonometric functions and logarithms, and evaluating
definite integrals or solving differential and integral equations which
are not readily integrable. An approximation has value only if one
knows how close an approximation it is, while a method of approximation
is of value only if it will yield as accurate an approximation as
one may desire. As an example, consider the problem of expressing V2
as a decimal. Since (1.4)2 < 2 and (1.5)2 > 2, one can conclude that
V2 = 1.4 with an error of less than .1l. Likewise, /2 = 1.41 with an
error of less than .0l. This process yields a sequence of numbers
a, = 1.4, a, = 1.41, a, = 1.414, ... which approaches Y2 in the sense
that if one specifies how close an approximation to /2 is desired,
then each term beyond a certain one will be at least this close to
V2. For example, if one wishes to evaluate /2 with an error of less
than .00001, then a; = 1.41421, or any term after.a;, will give such
an evaluation. The number 7 has been approximated by various means
since the problem of computing the circumference of a circle was first
studied. Some early approximations were very good, others very poor,
while most of them were given with no determination of their true
accuracy. Since 77 is defined as the ratio of the circumference of a
circle to its diameter, the circle C; with unit diameter has a circum-
ference of length 7. One of the most elementary methods of approximating
77 is to approximate the circumference of this circle by the perimeter
of a regular inscribed polygon. This can be done by use of the formula

Syp = %(1 - V1 - sf)]%, which gives the length s, of a side of a

regular polygon of 2n sides inscribed in C; in terms of the length
s, of a side of a regular polygon of n sides. Since a regular hexagon
inscribed in C, has a perimeter p, = 3 with s, = %, a regular polygon
of 12 sides has a perimeter p, = 12[%(1 - /1 - %)1% = 3.106 +--

Continuing this gives a sequence py, p,, Py, °°* of increasing numbers,
each less than 7. However, it is not easy to show how close an approx-
imation of 77 is given by a certain term of the sequence. One way of

doing this would be to find the perimeter of circumscribed polygons
in a similar way, which would give a sequence q;, q,, 93, °°° of
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decreasing numbers, each greater than 7. If one wants to find a Pp
which differs from 7 by less than some allowable error €, it would
then be sufficient to find a p, differing from the corresponding g,
by less than €, By use of calculus, one can derive other methods of
approximating 7. For example, the sequence s, =1, s, =1 - 1/3,
sg =1-1/3 +1/5, ++* approaches 7/4. In fact, the error in approx-
imating 77/4 by s, is less than 1/(2N + 1) if n > N. This can also be
expressed symbolically by: 7/4 = 1 - 1/3 + 1/5 - 1/7 + ++-. This
indicated sum of an infinite number of terms is called an infinite
series. Another series representation of 77 is given by:

[ 7854 1) 1[ 7854 1 }

10,000 545,261) 30(10,000)° (545,261)3

7T—
4

1( 7854 1 ]
L1 - -
50(10,000)5  (545,261)°

This means that for any allowable error € there is a number N such
that if one adds up at least N terms of this series the sum will differ
from 7/4 by less than €. For a given €, N can be much smaller for
the second series than for the first.

A precise definition of what is meant by the limit of a sequence or
by the sum of a series is necessary if one is to develop a mathematical
theory involving these concepts. The following definitions serve this
purpose, though they merely state in concise mathematical terms the
intuitive meaning of limit and sum discussed above.

A sequence a,, a,, **° is said to be convergent if there is a
number L, called the limit, such that for any € > O there is a number
N for which |L - anI <€ if n >N, This is expressed symbolically by
lim, ,pa, = L.

A series a, + a, + ay + *** is said to be convergent if there is
a number S, called the sum, such that for any € > 0 there is a number
N for which |S - snl <€ if n> N, vhere s, is the sum of the first

o

n terms of the series. This is expressed symbolically by 2‘ a, =sS.
n=

The concepts of convergence of a sequence and convergence of a
series are closely related, the convergence of a series a, ta,*+az+ ***
being equivalent to the convergence of the sequence of partial sums
Sys Sy Ut while the convergence of a sequence Sy Sy T is equiv-
alent to the convergence of the series a, + a, + ***, where a =s =~ s,_,.
Thus each theorem about convergence of a sequence corresponds to an
analogous theorem about series, and conversely. For simplicity, only the
language of series will be used hereafter.

It is seldom practical to sum the terms of an infinite series to
prove convergence of the series. Methods such as those given by the
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theorems discussed below are usually necessary. A striking exception
is the geometric series a + ar + ar? + **+, for which s, S atar+ e
# "= a(l - /(- r). If [r| <1, then lim s, = o/(1 = r). This
means that the series converges and has the sum a/(1 - r).

A series a; + a, + *** of non-negative terms is convergent if the
sequence of partial sums s,, S,5 *** is bounded, that is, if there is
an upper bound M such that s, <M for each n. The proof of this theorem
is immediate if it can be shown_that there is a least number M such
that s, < M for each n. For if M is the least such number, then the
terms of the sequence must eventually get arbitrarily close to M.
In other words, for any € > 0 there is an N such that M "€‘<SN. Since
the terms of the sequence are non-negative, s, cannot decrease as n
increases. Hence |ﬁ - sn| < € for each n > N. Thus the proof of this
theorem is dependent on the fact that a set of numbers which has an
upper bound has a least upper bound. The latter can be rigorously
proven only with use of a careful definition of irrational numbers.
It is one of many ways of characterizing the completeness of the real
number system — intuitively, that for any series which behaves like a
convergent series there exists a real number which is the sum. This
is expressed in another way by the following:

Cauchy’s Theorem. A necessary and sufficient condition for con-
vergence of a series a, + a, + *** is that for any € > (O there is
an N such that |a, + a .y + *++ + g, | <€ if n>Nand p> 0.

The necessity of the condition of this theorem is a direct con-
sequence of the definition of convergence. The sufficiency can be
established by showing that the sequence of partial sums s,, s ,,, ***

has a greatest lower bound S, and that the increasing sequence S,

S,, *** has a least upper bound S, which can be shown to be the sum
of the series. Many other proofs of this fundamental and important
theorem can be given. The condition of the theorem is sometimes used
as the definition of convergence, the existence of a sum for the series
then being proven.

A series a, + a, + *** is convergent if there is a convergent series
of non-negative numbers r, + r, + ** such that lan| < r, for each n.
This test for convergence is called the comparison test. It is an

immediate consequence of Cauchy’s theorem, since

i_lanl + |an+1| 4+ oeee+ lan+p| Srptoeeet Fntp

'lan*an+|+j"+an+p|

implies that the series a; + a, + *** satisfies the condition of
Cauchy’s theorem by virtue of this condition being satisfied by the
series ry + r, + ***. A series aq * a, + *** is said to be absolutely
convergent if the series |a1| +.|a2| + ¢+ is convergent. It is clear
from the comparison test that an absolutely convergent series is
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convergent,

If, for some number N, |an+,/an| < r <1 for some fixed number
r <1 and each n > N, then the series Ia‘l + et IaNl + r!aN| + rzlaNl
+ r3|aN' + *+* will serve as the comparison series r, + r, +°** of
the above comparison test. Thus the series a¢; + a, + *** is convergent.

If, for some number N, |an+1/an| > 1 for each n > N, then lim a, £ 0
n=®

and the series is divergent. These criteria for convergence in terms
of the behavior of the ratio Ian+‘/anl constitute the ratio test.
A more sensitive test of this type can be obtained by analysing the
case in which &ig lan+‘/an| = 1. This can be done by comparison with

the series 1 + 1/2P + 1/3P + --* for which lim q,,,/a, = 1 and which
n—

converges if p > 1 and diverges if p < 1. This leads to the result
that a series a; + a, + *** is convergent if there is a number p > 1

and a number N such that lan+1/an| <1 - p/n for each n > N; the series

is divergent if there is a number p < 1 and a number N such that
lan+,/anl > 1 - p/n + f(n)/n? for each n > N, where f(n) is bounded.
Many other tests for convergence of infinite series could be given.

2. Series of variable terms, All of the series of the above
discussion were series each of whose terms were constants. If x is
given a particular value in each term of a series u,(x) + u,(x) + ***

whose terms are functions of a variable x, the series becomes a series
of constants and the concept of convergence already discussed is
applicable. Such a series may converge for certain values of x and
diverge for other values of x. The sum of the series will be a function
S(x) of x, whose domain of definition consists of all x for which the
series has a sum. A series of constants can be used to compute particular
~quantities, such as 7 or V2. A series of variable terms represents
a function in a form that is frequently very useful, for example in
such problems as evaluating integrals and solving differential and
integral equations.

(To be concluded in the next issue.)
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CURRENT PAPERS AND BOOKS
Edited by
H. V. Craig

This department will present comments on papers previously published in the
MATHEMATICS MAGAZINE, lists of new books, and book reviews.

In order that errors may be corrected, results extended, and interesting
aspects further illuminated, comments on published papers in all departments
are invited.

Communications intended for this department should be sent in duplicate to
?é Vi Craig, Department of Applied Mathematics, University of Texas, Austin

, Texas.

Introduction to the Theory of Statistics. By Alexander McFarlane
Mood, McGraw-Hill Book Company, Inc., New York, 1950, XIII + 433 pages,
$5.00.

Within the last few years a fairly large number of books have appeared
on special phases of statistics, but textbooks for college classes
with a calculus background and commencing the study of mathematical
statistics have been comparatively few. One of the best of these latter
is the text under review. It should, therefore, find wide acceptance
by departments of mathematics wishing to offer a strong course in this
subject. Mathematical topics beyond elementary calculus are developed
as needed, for example, a brief discussion of the theory of sets and
something of the algebra of matrices. No knowledge of probability
being assumed, the book commences with this subject, which is followed
by the development of mathematical models that approximate experimental
situations. Statistical inference and design of experiments are treated
last.

As its title implies, the book’s emphasis is upon theory. There
is no discussion of descriptive statistics and few calculation problems
based on tables of numerical data. Stimulating problems occur at the
close of each chapter except the first one. While there are more than
five hundred of these, a few more solved, illustrative problems in the
text might have been helpful to the weaker student. The problems often
develop further the theory of the text, for example, correlation is
treated almost entirely in the problems. No answers to problems are
given in the text, but a separate answer pamphlet with all answers is
available. No wrong answers were found in a sample of problems checked.
The tables assembled at the back of the book for problem solving and
for reference, while not numerous, are adequate. They consist of tables
for the normal, chi-square, Student’s t and F distribution functions.
More references to original sources, given throughout the text, would
doubtless have been welcome to some readers. There are no footnotes,
but the references given are accompanied by very pertinent comments.
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Some other characteristics of the book, chosen rather at random,
are: new ideas are introduced with concrete examples; emphasis is
laid on marginal and conditional distributions; expected values are
used to introduce moments and moment generating functions; a proof
is given for a restricted form of the theorem that identical moment
generating functions imply identical densities; deduction of the normal
approximation to the binomial distribution is excellent; the normal
distribution is treated for n variables; the principle of maximum
likelihood is explained with special clarity; independence of the sample
mean and sample variance is not assumed but rigorously established
for normal populations; a thorough exposition of the Neyman-Pearson
theory of testing hypotheses 1s given as well as a similar treatment
of the analysis of variance.

Each page is numbered and also marked with chapter number and section
number. This should prove a convenience. There are seventy-four well-
drawn figures. Some misprints were noted, but they were easily recognized
as such. Doctor Mood’s book is a careful development of the basic
ideas of modern statistical theory.

University of Arizona R. F. Graesser

Brief Course in Analytics. Revised Edition. By M. A. Hill, Jr.
and J. B. Linker. New York, Henry Holt and Company, 1951. XI + 224
pages. $2.40.

This text is a revision of an earlier edition of 1940. The authors
have replaced some of the problems of the earlier edition and increased
the number: Each set of problems progresses from the very easy to those
which are more thought provoking, thus affording a challenge to the
better student.

In this edition an introductory chapter of basic formulas, tables
of logarithms, and natural trigonometric functions have been added.
The text is small in terms of physical dimensions and is designed for
a three semester hour course.

The content of the text does not differ from the traditional one on
this subject.. A claim to uniqueness might be made in the arrangement
of topics in that some general second degree equations, extent of
a curve, and translation of axes are studied before taking in detail
the straight line and conic sections. The reviewer considers this
arrangement a debatable pedagogical practice.

McNeese State College W. H. Bradford
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MISCELLANEOUS NOTES
Edited by
Charles K. Robbins

Articles intended for this department should be sent to Charles K. Robbins,
Department of Mathematics, Purdue University, Lafayette, Indiana.

A GEOMETRIC PERPETUAL CALENDAR

In 1952 we have the two hundredth anniversary of the adoption of
the Gregorian Calendar by England and her colonies. Perhaps this
justifies the introduction of a new perpetual calendar, a scheme by
means of which the day of the week corresponding to a given date can
be determined. As further justification, we submit that the scheme below
is easier to remember than other perpetual calendars. Those who disagree
will no doubt agree, at least, that such schemes emphasize the need
for calendar reform similar to that achieved by the ‘‘World Calendar”',
a calendar endorsed by the Mathematical Association of America.

First, a dash of history. The Julian Calendar, first used in 45 B.C.,
initiated a regular leap year. This calendar fitted the seasonal year
very well for a long time, but by the sixteenth century the two were
ten days out of phase. Pope Gregory XIII and his astronomers proposed
that October 4, 1582 be followed by October 15, 1582 and that from
1582 on there be only 97 leap years every 400 years - the century
years not divisible by 400 being dropped as leap years. The Gregorian
Calendar was not used by the American Colonies until 1752, At that
time there was a difference of 11 days between the “Old Style” and
the ““New Style” calendars.

We now describe a method for determining the day of the week corres-
ponding to a given date (say, October 16, 1582). The date splits into
four parts: the month (October), the day (16), the century (15), and
the year (82). We graph four letters as shown in the accompanying
figure: M for month, D for day, C for century, and Y for year. We note
century 15 refers to the 1500’s, not to the 15th century.

Consider M. March (the first month beginning with M) is placed
at the origin. The months from April to August zigzag in order from
(2,0) to (6,4). The months from September to January zigzag in similar
fashion over the northern edge of M from (0,2) to (4,6). February at
(6,6) completes the M. (Note the positions of March and September.
Equinoxiously speaking, we may spring into fall or fall into spring).
The unduly high ordinates thus given January and February are com-
pensated for by lower ordinates given these months in the letter Y.

"For details of this calendar and arguments in favor of its adoption,
write to “The World Calendar Association, Inc., 630 Fifth Avenue, New
York 20, New York.”
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Consider D. Days of the month are taken modulo 7. Day 0 is placed
at the origin. Days 1 to 3 have positions from (0,1) to (0,3), days
from 4 to 6 have positions from (2,1) to (2,3).

D J F
0.S. /'Ms y=4ner
0 N R Mod. 7 Mod7/ Mody  Tan'& Feb'
T
| r
3 3 12 z '8 3
S ’
m 7 2 5 13 2,3
1 4 14 19 1,2
n ’
M a 0 15 1617 (8 20 0.1
00’
Month Day Centur, Year o

Consider C. Centuries in the Julian Calendar are taken modulo 7.
Century 15 (the beginning of the end of this calendar) is placed at
the origin. Centuries 12 to 18 (0ld Style) run counterclockwise from
(0,3) to (3/2,0), dropping by units to century 15 and then moving at
half speed to the right. Thus, with C as a clock face, century 17
(01d Style) is at six o’clock. Century 17 (New Style) is at twelve
o’clock. (Remember this is the century the colonies moved up from the
old to the new calendar). Centuries in the Gregorian Calendar are
taken modulo 4. They progress clockwise around C from century 17 to
century 20 at the point (2,0). There is, of course, a double space
between the last and the present century in this sequence.

Consider Y. The year y is taken in the form 4n + r, where r 1is
0, 1, 2, or 3. It is placed at the point (n,r) except when the date
involves January or February. For these months, it is placed at the
point (n,r’') where, for r # 0, r' = r - 1. In general, 0' is -2. In
the exceptional case, denoted by 00', its value is -1; this is used
for dates in the Gregorian Calendar where the century-year number is
divisible by 100 but not by 400. (In other words, for the years which
have r = 0 but which are not leap years)Z2.

The actual computation is simple. Each of the four parts of a date
now corresponds to a point. Each point has as coordinates the components
of the vector going from the origin to that point. Add these four
vectors. Dot the sum with the vector (-2,1); that is, multiply the
first component by -2, the second component by 1, and add. The resulting
number represents the day of the week modulo 7 where the first day
of the week, Sunday, corresponds to the number 1, and so on.

Those to whom the validity of the process is not self-evident may
verify it by mathematical induction. To remember the process requires
recalling the vector (-2,1). It helps to remember that (2,1) is the

2The special treatment given January and February can be avoided by re-
p g Yy
garding these as terminal months of the previous year.
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vector corresponding to the present century. Another method is the
following. The first vector in the product is remembered as ‘“‘month,
day, century, year, add” , or “MDCYA” , or f(Y). The second vector
is f(P), or “MDCPA” , or ‘“‘minus deuce comma plus ace” .

We give two examples:

A, December 7, 1941 was a Sunday since
(2,6) + (0,0) + (2,1) + (10,1) = (14,8) and
(14,8) * (-2,1) = -28 + 8 =1 (mod. 7).
B, January 18, 1800 was a Saturday since
(4,6) + (2,1) + (2,3)+(0,-1) = (8,9) and
(8,9)°(-2,1) = =16 + 9= 0 (mod. 7).

This is the same day as January 7, 1800 (Old Style). As a check,
(4,6) + (0,0) + (3/2,0) + (0,-2) = (11/2,4) and (11/2,4)+(-2,1)=0
(mod. 7).

Washington University ~ Marlow Sholander

OMEGA

Cube root of onme. Without ever solving the equation x3 = 1 in the
usual way, we can sport about with the cube roots of 1 in an interest-
ing manner. Since 1X1x1 =1, it is certain that 1 is a cube root
of itself, but may there not be some other? If 1 has another cube
root, distinct from 1, let us call it @, omega. Since (w?)3 = of =
(w®)2 = 12 = 1, it follows that w2 is also a cube root of 1.

Other cube roots. If we assume that there is another cube root,
v, (distinct from 1, @, or «?), v® = 1, and we must have v satisfy the
equation v3 = 1 = 0, If v is distinct from 1, then v - 1 # 0 and we
can divide the equation by (v - 1) and obtain the new equation w2+
+ 1=0. Again if v is distinct from@, v = @ # 0, and we can divide
this new equation by v - , as follows: '

v - w) 2+ +1 (v+ (1+w)
v2 - v
v(l+w)+1

v(l +w) - w(l+w)

1+w+w?
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The remainder is the sum of the three roots already considered, and
the question arises whether this remainder is zero or not.

The sum of the first three roots. If we put S =1+ w + w?, and
add the three equations

1 + w + w?

0
n

wS =w +w?+l

0l = w2+ 1 +w

we get S2 = 35, whence either S = 0, or else we can divide by S and
get S =3, But if S =3, 3 =1+ w+ @ and 3w =w + »? + 1, that
is 3w = S = 3, whence w = 1. So if w is a root distinct from 1, S
cannot be 3 and the remainder, 1 + w + wz, must be zero.

Are there just three roots? The division of »> = 1 =0 by v - 1
and then by v - w, gave v + 1 + w = 0, with no remainder. If to this
last equation we add @? on both sides, we get v + 0 = w?, Hence there
are not four roots: the only roots of v3 =1 are 1, @, and w?, But
are there three roots, or may w and w? be the same root? To show that
w and @? are distinct, consider the square of their difference. We
have (w=a?)2 = w2 =203 + W =02 -2 +w=0w?+1+w=-3=0-3.
Hence @ # w?. But we have not yet shown that either w or @? is distinct

Is there more than one root? So far we have assumed that w# 1,
but now we can show that this inequality is valid. For we have the
two equations

Cl.)‘&)z

%)

1 +w+ 0?2 =0

Adding and subtracting, we get
%(-1 t i/3)
%(-1 5 i/3)

1+ 2w ii/g, whence w

1+ 22 ;i/g, whence 2?

Comparing these, we see that although there appear to be two values
of w, it is a matter of indifference which is taken, the other being
then w2,

The mutual squares. Not only is w? the square of , but also
w is the square of w?. For (2?)% = w* = (w®)w = (1)w = w. This curious
property, that each is the square of the other is not possessed by
any other pair of distinct numbers. For any pair of numbers, m and n,
each of which is the square of the other, satisfy the equations m”~ = n
and n2 = m, and so n must satisfy the equation n® - n = 0. Obvious
factors are (n - 0), (n - 1), and (n? + n + 1), This third factor
may be written n? - (w + «?)n + »°, vwhose factors are obviously (n - )

and (n - 22). Hence the only solutions are n = 0, 1, o, wz, with
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m =0, 1, w?*, . The pairs (0,0) and (1,1) are extraneous for our

purpose, and (w,w2) is the only pair of distinct numbers having the
mutual square property.

Tufts College William R. Ransom
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PROBLEMS AND QUESTIONS
Edited by
C. W. Trigg, Los Angeles City College

Readers of this department. are invited to submit for solution problems
believed to be new and subject-matter questions that may arise in study, in
research, or in extra-academic situations. Proposals should be accompanied
by solutions, when available, and by such information as will assist the
editor. Ordinarily, problems in well-known textbooks should not be submitted.

Solutions should be submitted on separate, signed sheets. Figures should
be drawn in India ink and twice the size desired for reproduction. Readers
are invited to offer heuristic discussions in addition to formal solutionms.

Send all communications for this department to C. W. Trigg, Los Angeles
City College; 855 N. Vermont Ave., Los Angeles 29, California.

PROPOSALS

133. Proposed by W, R, Talbot, Jefferson City, Missourt.

If a, b, ¢ and d are used to replace distinct non-zero digits,
find their values in the equations

(ca)?+ (ab)%= (cb)2+ (c?)2= (cc)2+ (d)2=(bd)2+ (bc)2.

134. Proposed by G. W. Courter, Baton Rouge, Louisiana.

Using the sides of a paralielogram as hypotenuses, isosceles right
triangles are constructed externally (or internally) to the parallelc-
gram. Show that the vertices of the right angles determine a square.

135. Proposed by C. S. Ogilvy, Syracuse University.

A farmer sells p/q of his eggs plus p/q of an egg to his first
customer, p/q of the remaining eggs plus p/q of an egg to his second
customer, and so on until all of his eggs have been sold to n customers.
Determine necessary and sufficient restrictions on p and ¢ and find
the initial number of eggs, if none are to be broken.

136. Proposed by Corporal P, B. Beilin, Somewhere in Korea.

What is the maximum number of spheres of radius r which can be
placed in a cylindrical can of radius R and height H? (Thought of
while eating canned pretzel balls.)

137. Proposed by W. T. Cleagh, Jacksonville, Florida.
Let N = |Hp:k t Hp?m| where the sets p; and pj together con-

stitute the first n primes and the o, and a are arbitrary positive
integers. Show that N is a prime if N is less than the square of the
(n + 1)th prime. For example: (2)2(3)(5)(7)(11) - (13)(17)(19)
= 421 < (23)2, so 421 is a prime.

280
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138. Proposed by D, Arany, Budapest, Hungary.

Establish the following identity:
[(AP)%2 - (AH)2]tan A + [(BP)2 - (BH)?]tan B + [(CP)%? - (CH)?]tan C

= (PH)?(tan A + tan B + tan C), where P is an arbitrarily chosen

point in the plane of the triangle ABC and H is the orthocenter
of ABC,

139. Proposed by H. J. Hamilton, Pomona College.

Given a closed, convex curve C, not intersected by the x-axis.
Let A be the area which C bounds and V the volume of the solid of
revolution obtained by revolving A about the x-axis. Now V is given
by each of two integral formulas, one obtained by the *‘circular disc
method” of subdividing V and the other by the ‘‘cylindrical shell
method.” (See any elementary calculus text.) Reconcile these integrals
without appealing directly to the concept of volume.

SOLUTIONS

Late Solution
105. M. S. Klamkin, Polytechnic Institute of Brooklyn, New York.

The Sum of Quadratic Ssurds

74. [Sept. 1950] Proposed by Samuel Skolnik, Los Angeles City College.

Prove that the sum of any finite number of dissimilar pure quadratic
surds is irrational.
n
Solution by the Proposer. We have to prove that X b;Va, is
1=1
irrational, where bi £0, a, # 0, and a, contains no square factor.
Assume the proposition to be true for n = k. (It is well-known,

or may easily be shown, that the proposition holds for n = 2.)
k+

1
Now assume that £ b;/a; = r, where r is rational. Then
i=1 '

k

_z b/;_ - r = ‘bk+‘vak+" (1)

1 1

Consider the product of all expressions obtainable from
x - (=2 bi/Z:'- r)] by keeping the signs of x and r unchanged and
i=1

taking every possible arrangement of signs for the terms of Zbi/;:.
In the resulting polynomial, let c. be the coefficient of /;:; Since
the polynomial is unchanged if va; is replaced by - /;:, we have
ci/;:.= -ciV;: or 2ci/Z:'= 0. But a; #0, so c; =0, and the product
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is a polynomial in x of degree 2% with rational coefficients.
By (1), -by,4Va,,, is also a root of the polynomial, hence by, Va,,,

is also a root of the polynomial. This implies that for some two differ-
ent arrangements of signs, the corresponding values of = bVa ;i Cr

i=1
are equal and opposite in signs. Then we have

k k=
(2 B/a; =)+ (I b/a; - 1) =0,

i=1 i=1
where IE&I = l% l lb I This implies
ko _ =
Z (b, *+ b,)Va; = 2r, (2)
‘=

where the number of non-vanishing terms (3; + Zi)Vai is certainly
not greater than k.
Case 1. If |r| >0, thei (2) contradicts tﬁf induction hypothesis.

Case 2. If r = 0, then Z b; /_— 0 and ( 2 b, Vr—)z 0, whence

i=1 i=
k+1 kt1 kt1

b.zai + z 2 2bb/ (3)

wherf the terms such that e = m are excluded from double summation.
+

Now 2 bfa > 0, since it is a sum of non-vanishing positive numbers,
i=1
k+1 k+1

so £ 2bb 22 a % 0. Moreover each va_,a is a quadratic ir-

e=1 m=1
rational, since a, ¥ a, and neither contains a square factor. Therefore
(3) is impossible by Case 1.
Since the assumption that the induction cannot be continued beyond
= k has been shown to contradict the induction hypothesis itself, then
the sum of any finite number of dissimilar pure quadratic surds is
irrational.

A Conic Unrolled
87. [Jan. 19511 Proposed by Leo Moser, Texas Technological College.

A right circular cone is cut by a plane. The intersection of course
is a conic. Find the equation of the curve that this conic goes into
if the cone is unrolled on to a plane. In particular, if the cone
is a cylinder and the plane cuts the axis of the cylinder at 45°, then
the ellipse formed will unroll into a sine curve.

Solution by M. S. Klamkin’s Sophomore Calculus Class, Polytechnic
Institute of Brooklyn. Let the equation of the cone in cylindrical
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coordinates be a?r? = z2., Cut the cone along its intersection with
the plane y = 0 and let that line become the x'-axis. Then the co-

ordinates of the transform of a point (r, &, z) on the cone are
(r', 6'), where

r' =VrZ + 22 = /1 + a2, and 9' = rO//rZ + 22 = O//1 + a2,

Now consider the transform of the intersection of the cone with a
general surface, F(r, 6, z) = 0. The equation of a cylinder with
elements passing through the intersection curve and parallel to the
z-axis is F(r, €, ar) = 0. Thus the equation of the transform curve
will be

F(f'//17+ a2, 6'V1 + a2, ar' V1 + a2) = 0.
If F(r, 8, z) = 0 is a plane, then
r(A cos @ + Bsin8) + Cz+ D=0

and the transform curve is

(r'/V1 + a2)(A cos 0'V1 + a2 + B sin 0'V1 + a2 + Ca) + D = 0.

If we use a cylinder, r = a, instead of the cone, a’r? = 22, we find

that the point (r, 8, z) transforms into (x', y') where x' = z, and
y' = a6, Thus if the curve of intersection is given by r = a and
F(r, 6, z) = 0, then upon development the intersection is transformed
into F(a, y'/a, x') = 0. Now if the intersecting surface is the plane
r(A cos @ + B sin §) + Cz + D=0, then

F(a, y'/a, x') = a(A cos y'/a + B sin y'/a) + Cx' + D = 0,

which is a sine curve for all plane intersections except when A = B = 0
or when C = 0,

Quadrisection of a Triangle

90. [Jan. 1951] Proposed by D. L. MacKay, Manchester Depot, Vt.

Triangle ABC is divided into two parts, triangle DBE and quadri-
lateral ADEC, by the line DE, Construct a line which will bisect
each of these parts.

Solution by the Proposer. Let PM cut DEin N with P on AB and
M on AC. Now the envelope of a line PN which bisects a given tri-
angle DBE is a hyperbola, for setting DN = x, DP = y, we have xy
= %(DB)(DE) = a constant. The center of the hyperbola is D and its
asymptotes are the indefinite sides DB and DE. Corresponding to the
vertices B and E we have two other hyperbolas. As P and N traverse
the perimeter so that PN bisects triangle DBE, the tangency of PN
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passes from one to another of these hyperbolas when PN coincides
with one of the medians. [See this MAGAZINE, 24, 167, (Jan. 1951).]

Prolong ED to cut CA extended at O and set OM = x', ON = y'. Then
triangle OMN/triangle OEC = x'y'/(OE)(OC) = k, a constant. Hence
x'y' = R(OE)(OC) = a constant and the envelope of NM is a hyperbola
having O for center and OF and OC as asymptotes.

Now PM is the common tangent to these two hyperbolas. In general
the construction of this tangent would involve a fourth degree equation,
but since the two hyperbolas have a common asymptote, OE, the equation
is reduced to a quadratic equation.

Let AD = a, AO= b, DO=c, AB=d, AC= e, DE = f, and AP = «x.
Then DP = x - a and DB = d - a. Since (AM)(AP)/(AB)(AC) = triangle
AP M/triangle ABC = 1/2, we have AM = de/2x. Also, (DP)(DN)/(DB)(DE)
= triangle DPN/triangle DBE = 1/2, so DN = (d - a)f/2(x - a).

Now draw PH parallel to ED and cutting CA extended at H. Then
from AD/AP = AO/AH = DO/PH we obtain AH = bx/a and PH = cx/a. From
MH/MO = PH/NO, we have

NO= [(cx/a)(b+de/2x)]/[bx/a+ de/2x] = (2bcx? + cdex)/(2bx? + ade).
From DN = NO - DO, we have
(d - a)f/2(x - a) = (cdex - adec)/(2bx? + ade), or

2[bf(d - a)/de - c]x? + 4acx + aldf - af - 2ac] = 0.

We obtain AP by constructing the positive root of this equation and
AM by the construction of de/2x.

According to D. J. Korteweg, Complete Works of Huygens, 11, 219-225,
this problem received the attention of Huygens in 1650, 1656 and 1659.

If in the problem we replace the given line DE by the condition
that triangle ABC be divided into four equal parts by two perpendicu-
lar lines, we have a problem sometimes called the Problem of Leibniz,
since it is mentioned in one of his works, Nova Algebrae promotio -
Gerhard’s ed. Leibniz, Mathematische Schriften, 7, Halle, 154, (1863).
It has appeared as an exercise in seven editions of Traité de Geo-
métrie of Rouché et de Comberousse. It has evoked muny sterile “solu-
tions,” for the problem cannot be constructed by straight edge and
compass. — L’Intermédiaire des Mathematiciens, 1, 39, 55-62, 135,
(1894).

A Curve Dividing a Rectangle

110. [Sept. 19511 Proposed by H. T. R. Aude, Colgate University.

(a) Place a unit sguare with its sides parallel to the ‘coordinate
axes so that one curve of the family xzy = ¢ will pass through two
opposite corners and divide the area of the square in the ratio 1:3.
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(b) Consider the similar problem when the square is replaced by a
rectangle a by b and the ratio of the division of its area is. the
proper fraction n:m.

Solution by Lt, Col., R. E. Horton, Lackland AFB, Texas. In (b)
let the vertices of the rectangle be (x,, ¥,), (x,, ¥,), (x,, ¥,),
and (x,, y,) where

x, - x,=a and y, -y, = b, (1)
Also let the desired curve of the family be'xzy = c¢,, whereupon

Yy = c]/x12 and y, = c‘/xzz. (2)

Then we have

mJ 2(c,/x2 N cl/xzz)dx = nJ 2(c|/x12 - cl/xz)dx,

*y %

Upon integrating and simplifying we get (x, - x1)2(nx2 - mx,) =0
which leads to the trivial solution x, = x, and one other, x, = nxz/m.
With this and equations (1) and (2) we arrive at the solution:

x, = an/(m - n); y, = bm?/(m? - n?); x, = an/(m=n); y, = bn?/(m? - n?);
¢, a?bm?n2/(m? - n2)(m - n)%. Thus the points (x,, ¥,), (x5, ¥,) and
the curve x2y = a2bm?n2/(m + n)(m - n)3 satisfy the conditions of
part (b). .

(a) When a=b=1=n and m = 3, we have (x,, y,) = (1/2, 9/8),
(x,, ¥,) = (3/2, 1/8) and x2y = 9/32 is the curve through the two
points.

Also solved by W. B, Carver, Cornell University; A. Sisk, Maryville,
Tenn.; and the proposer. '

The Range of a Projectile

111. [Sept. 1951} Proposed by P. D. Thomas, U, S. Coast and Geodetic
Survey, Washington, D.C.

A projectile is fired at an angle of elevation ¢ and with initial
velocity u. After a time t, the projectile is at a point P where it
suddenly receives an added velocity v directed along, the tangent to
the trajectory at P. Find an expression for the range of the projectile
in terms of &, u, t,, and v. (Consider gravity as the only force
acting.)

Solution by Howard Eves, Champlain College. Let R be the range,
R, and R, the horizontal distances travelled by the projectile, in
times t, and t,, before and after P. Taking the origin at the initial
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point we have the well-known parametric representation for the first
part of the trajectory:

x = ut cos 8, y = ut sin 6 - Y%gt?. (1)

Let w be the tangential velocity at P (v not yet added). Then from (1)
we find

v = [u? - 2gut,sin 0 + gztf]%. (2)

Also, if ¢ is the inclination of vector w, we have
cos ® = u cos 6/w, sin ¢ = (u sin 6 - gt,)/w. (3)

Let h be the height of the projectile at P. Then
h = ut,;sin 0 - %gti. (4)

We can now calculate t, (assuming the case where P is before the maximum
height) as

t, = {(v+ w) sind + [(v + w)%sin?p + 2gh]%}/g. (5)
But
R = R + R, = ut,cos & + (v + w)t,cos 9.

Substituting from (2), (3), (4), (5) we obtain the desired relation.
This result furnishes a first approximation for problems connected
with rocket bombs.
Also solved by Leon Bankoff, Los Angeles, California; Louis
Berkofsky, Roxbury, Massachusetts; W. B, Carver, Cornell University;
and the proposer,

A Nine Dpigit Square

112. [Nov. 19511 Proposed by Victor Thébault, Tennie, Sarthe, France.

Find a number of the form aaabbbccc which gives, when increased by
unity, a perfect square of nine digits.

Solution by T. W, Carlos, Detroit, Michigan. If N? is to terminate
in ccd, where d = ¢ + 1, then N has one of the forms 100k, 250k * 1,
250k + 83, or 500k :+ 166. If N? begins with aaa, then N must fall within
definite ranges which may be selected from a table of the squares of
four-digit integers, for example, 10530 to 10590, 14890 to 14940, etc.
There are only five values of N of one of the necessary forms within
these ranges, namely: 21083, 18251, 18249, 14917, and 10583.

aaabbbcee = (108a + 10%b + ¢)(111) = (W + 1)(N - 1). Hence one
of the factors (N + 1) or (N - 1) is divisible by 37, and one of the
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factors is divisible by 3. The test for divisibility by 37 eliminates

the first four of the possible values of N, so that the unique solution
is

111999888 = (10583)2 - 1.

Also solved by Leon Bankoff, Los Angeles, Calif.; Monte Dernhan,
San Francisco, Calif.; Erich Michalup, Caracas, Venezuela; F. L. Miksa,
Aurora, Ill.; and J. S. Shipman, Laboratory for Electronics, Inc.,
Boston, Mass.

Michalup points out that if zero be considered an admissible value

for a, then 000444888 = (667)% - 1 and 000111555 = (334)% - 1 are

also solutions.

Equilateral Triangle in Isogonic Configuration

113. [Nov. 1951] Proposed by Benjamin Greenberg, Brooklyn, N.Y.

Isosceles triangles with base angles of 30° are constructed ex-
ternally on the sides of triangle ABC. The third vertices of the
isosceles triangles determine an equilateral triangle. Can this be
proven by pure synthetic geometry without recourse to trigonometry?
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I. Solution by Charles Salkind, Polytechnic Institute of Brooklyn,
Let the third vertices of the isosceles triangles on AB, BC, CA be
F, D, E, respectively. On AE, with D'A = DC and D'E = DE, construct
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triangle D'AE congruent to triangle DCE. Then angle D'AE = angle DCE
= angle BCA + 60°. Now angle FAE = angle BAC + 60°, so angle D'AF
= 360° - (angle BCA + angle BAC + 120°) = 360° - (180° - angle ABC
+ 120°) = angle ABC + 60° = angle FBD. Draw D'F. Then D'A = DC = DB
and AF = FB, so triangles D'AF and DBF are congruent. Hence D'F = DF,
and triangles FDE and FD'E are congruent.

Angle DEC = angle D'EA and angle DFB = angle D'FA, so angle
D'ED = angle AEC = 120° = angle AFB = angle D'FD. Now since triangles
D'FE and DFE are congruent, angle D'EF = angle DEF = % angle D'ED
= 60°, and angle D'FE = angle DFE = Y% angle D'FD = 60°. Hence angle
EDF = 180° - angle DEF - angle DFE = 60° and triangle DEF is
equilateral.

I1. Solution by Leon Bankoff, Los Angeles, California. Let D, E, F
denote the vertices of the externally constructed isosceles triangles
opposite A, B, C, respectively. On FB and BD construct a parallelogram
with fourth vertex at G. Draw GA, GE and GC. Then angle BDG = angle
GFB. Now angle BDC = 120° = angle AFB, hence angle GDC = angle AFG.
Also, GD = FB = AF and DC = BD = FG, so triangles GDC and AF G are
congruent. Hence GC = AG and angle CGD = angle GAF,

In parallelogram FBDG, angle FGD = 180° - angle BF G

180° - (120° - angle AFG) = 60° + angle AF G. Then angle AGC
360° - (angle FGA + angle FGD + angle CGD)

360° - (angle FGA + 60° + angle AFG + angle GAF)

360° - (60° + 180°) = 120°.

GC = AG, AE = EC, and GE = GE. Therefore triangles AGE and CGE
are congruent. It follows that angle EGC = angle AGE = % angle AGC
= 60° and angle GEC = angle GEA = ¥% angle AEC = 60°. Then angle GCE
= 60° = angle GAE and triangles AGE and CGE are equilateral. Hence
GE = CE and angle GCE = angle AGE. From triangles GDC and AF G,
angle DCG = angle FGA, so angle DCE = angle FGE. Therefore, since
DC = FG, triangles DCE and FGE are congruent and DE = FE.

In like manner it may be shown that FE = FD, whereupon triangle
FDE is equilateral.

III. Solution by F. F. Dorsey, South Orange, N.J. On any triangle
ABC construct externally isosceles triangles ABF, BCD, and CAE
with base angles of 30°. Also, on AB construct an exterior equi-
lateral triangle ABP and draw CP. Triangles DBF and CBP are similar,
for BC/BD = BP/BF and angle DBF = angle ABC + 60° = angle CBP.
Therefore FD/CP = BF/BP. In like manner, triangles EAF and CAP
are proven similar, and FE/CP = AF/AP = BF/BP = FD/CP, whence FE
= FD. By the same method, it may be shown that DE = FD. Hence EFD
is equilateral.

IV. Solution by W. B, Carver, Cornell University. Let A, B, C be

the vertices of the given triangle in clockwise order and D, B, G;
A, E, C; A, B, F, the vertices of the isosceles triangles in counter-
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clockwise order. Note that F is the center of an equilateral triangle
constructed externally on AB. Draw the 120° arc AB of the circle
with center at F, and with D as center draw the similar arc BC in-
tersecting the arc AB at Q. Draw the line segments QA, 0B, QC. Angle
AQB = 120° = angle BQC, hence angle CQA = 120° and Q lies also on
the 120° arc AC with center at E. (This point Q is one of the “iso-
gonic centers.” See R. A. Johnson, Modern Geometry, page 218.) Since
F and D are both equidistant from B and Q, line FD is perpendicular
to BQ;, and similarly lines DE and EF are respectively perpendicular
to lines CQ and AQ. It follows that angle FDE = 60° = angle DEF
= angle EFD, whereupon triangle EFD is equilateral.

The above proof is for the case where all the angles of the triangle
ABC are less than 120°. The proof has to be slightly modified in an
obvious way for the case of a triangle with one angle greater than or
equal to 120°.

Also solved by Charles Salkind, using methods I, III and IV.

QUICKIES

From time to time this department will publish problems which may be solved
by laborious methods, but which with the proper insight may be disposed of
with dispatch. Readers are urgel to submit their favorite problems of this
type, together with the elegant solution and the source, if known.

Q 61. Multiply 5746320819 by 125. [Submitted by W. C. True.]

Q@ 62. Show that if an even number is multiplied by 6, the unit’s
digits of the even number and of the product will be the same. If
an odd number is multiplied by 6, the unit’s digits will differ by 5.
[Submitted by W. R. Ransom.]

Q 63. The figure consists of five concentric circles of radii 1, 2, 3,
4, and 5 inches. The two diameters are mutually perpendicular. Find

the total shaded area. [Submitted by the Department of Mathematics,
Woodrow Wilson Junior College, Chicago, Ill.]
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Q 64. Solve the system: xy /(x + y) = a, xz/(x + z) = b, yz/(y + z)
= ¢. [From the 1951 High School Mathematical Contest of the Metro-
politan New York Section of the Mathematical Association of America.
By permission.]

Q 65. Find the sum of the coefficients of the expansion of (x + y)".
[Submitted by T. E. Sydnor.]

Q 66. The axes of symmetry of two 2” right circular cylinders intersect
at right angles. What volume do the cylinders have in common? [Sub-
mitted by G. R. Jaffray. ]
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