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A DEVELOPMENT OF ASSOCIATIVE ALGEBRA 

AND AN ALGEBRAIC THEORY OF NUMBERS, I 

H. S. Vandiver 

INTRODUCTION: In a number of articles we hope to publish under 
the above title, it is planned to treat the topics mentioned in a bit 
unusual way. In the first place, what we shall mean here by the algebraic 
theory of numbers is the treatment of number theory by means of the 
methods of abstract algebra rather than by the methods of analysis and 
geometry, although at times some of the latter may be employed. On 
the other hand, by the theory of algebraic numbers we shall mean the 
classical theory of numbers based on the arithmetical properties of 
the zeroes of a polynomial f(x) with rational integral coefficients 
and the generalizations of this theory. 

In future papers, we shall show that abstract algebra may be applied 
to even some of the most elementary parts of number theory to obtain 
results which appear new. An instance of this is well exemplified, 
using semi-groups, in an article by M. W. Weaver (This (magazine, 
"Co-Sets in a Semi-Group", Vol. 25, pp. 125-36, (1952)). On the other 
hand, we shall generalize patterns well known in number theory so 
that it is possible to obtain new developments in abstract algebra. 

1. 

THE NATURE OF OUR POSTULATES 

In the account in the present paper we aim to start close to the 
beginning of things by setting up a system of postulates for the in- 
troduction of associative algebra which postulates are different from 
those usually given. Here we have in mind, among other things, the 
fact that, as far as I have been able to find out, many secondary 
school students are alienated from arithmetic and algebra because 
the only way they learn these topics in that period is by following 
a set of rules which are never stated explicitly by the teacher; and 
the only way the student ultimately is able to carry on the algebraic 
manipulations correctly is due to the fact that he has heard so many 
times from his teacher that certain manipulations are wrong. This 
does not matter much in the case of a student who would never be in- 
terested in mathematics, in itself, under any circumstances; but it 

233 
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is rough, it seems to me , on the student of innate mathematical 
ability. 

It may be argued that we should be content in learning elementary 
algebra to become acquainted with the manipulations involved in it 
just the same way we learn, when children in elementary schools, the 
use of language. Most of us learn language with little or no knowledge 
of grammar. I find no fault with this view point concerning the learning 
of language except that it might happen that a few of the students 
would have a natural flair for such things as philology. In this case 
his latent abilities in this direction might not be developed at all 
until he would reach college. That is, it seems to me, he would be 
at about the same degree of disadvantage as a young person of natural 
mathematical ability. It might be best for the teacher to introduce 
occasionally a few explicit postulates in arithmetic and algebra for 
the benefit of the more gifted youngsters. 

We can now indicate our reasons for employing the types of axioms 
we introduce here. Consider such an elementary problem as reducing to 
its simplest form the expression 

(A) 6x - (2x + (2x + (x + 2x) + (2x + (x + 1))). 

One of the usual procedures would be to say that this expression equals 
what is obtained from it by substituting x + 1 for (x + 1), then to 
substitute 3x + 1 for (2x + x + 1), etc., until we reached the stage 
where we have 6x minus an expression contained in a parenthesis and 
the inside expression contains no parenthesis. Then our problem is 
a little more complicated. We cannot remove the parenthesis by a sub- 
stitution immediately in the same manner as before, but the student 
learns how to handle this minus sign in front of the parenthesis after 
probably many trials and errors on his part. After learning such rules 
and ideas in secondary schools, he goes to college and is possibly 
introduced to a textbook in which perhaps near the beginning it is 
stated, using symbols, that the postulates governing algebra are as 
follows: The Commutative Law of Addition; the Closure Law of Addition; 
the Associative Law of Addition for three elements; if equal numbers 
be added to equal numbers, their sums be equal; and similar laws 
governing multiplication; and the Distributive Law. It seems to me 
that this cannot appear to him except as something entirely new; and 
in my opinion, it is quite a far cry, using such postulates, to justify 
the different types of substitution employed in the specific example 

lIn my own case I recall that the only thing that interested me when I was 
taught arithmetic was the rule for finding the greatest common divisor of two 
positive integers, which happened when I was about eleven years old. Later, 
I think, I was first attracted to geometry possibly because some reasons were 
given for our steps in setting up proofs. This was in spite of the fact that 
I had very little ability in geometry. It was only in my second year in high 
school that I became interested in algebra. 
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just treated; and even if this were done, the student, at the stage 
mentioned, could follow little, if any, of the necessary arguments. 
Our point of view here is exactly the opposite. We start with a set 
of postulates (1 through 6, including a powerful postulate of substitu- 
tion) such as the student learns them tn elementary schools, and we 
derive from these postulates not only all the laws just mentioned 
but others also. In this way we develop elementary algebra, and at 
the same time we find that we have developed an infinity of finite 
algebras. In order to carry out these ideas, we generalize familiar 
notions and specialize other notions. For example, we do not start 
off with an abstract notion of a general set as used by most math- 
ematicians. We start with ideas found in common experience and speak 
of a set of marks or symbols. Having stated certain postulates and 
developed abstract systems based on them, we later consider modifying 
these properties so that we cannot regard our "sets" as sets of symbols 
as, for example, in the theory of real numbers. On the other hand, we 
generalize ordinary notions of equality. The statement a = b is often 
taken to stand for a is b. Probably the substitutions we went through 
in connection with our elementary problem referred to may be justified 
on such a basis. However, from our point of view 4 + 2 = 6 does not 
mean 4 + 2 is 6. 4 + 2 will be regarded primarily as a finite ordered 
set of symbols and as such would be different from 6. So in this way 
our equality sign seems to have more general significance than usual; 
in fact, we could conveniently use another symbol, such as , for it. 

To state conveniently the kind of postulates we need to carry out the 
ideas before mentioned, we shall in part 3, Foundations of a Theory 
of the Natural Numbers and Certain Finite Arithmetics, using as far 
as possible language that we hope will be intelligible even to a non- 
mathematician, define finite ordered sets of symbols that we shall call 
" combinations," (cf. the definitions following (3) and footnote 9); 
thus, (A) is a combination. We do not, however, attempt to describe 
all the possible methods we shall employ in selecting symbols to de- 
note other types of symbols or sets of symbols, so that our description 
of procedures with symbols is for that reason incomplete, if not for 
other reasons. 

Another peculiarity of the theory is the fact that we do not say 
such an expression as 

a + b f C 

is an abbreviation for 

((a + b) + c). 

(This is only possible since we are confining ourselves to associative 
systems). If we did, then from the point of view we are using, this 
would make things very difficult and complicated for us. We would 
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not only have to define such an expression as the second one as being 
a combination, but also the first one as a finite ordered set of symbols 
which was written as an abbreviation of the second. We shall attempt 
to define "combination' in such a way that each of the last expressions 
will be recognized as such. 

2. 

THIE NATURAL NUMBERS, DENUMERABLE SETS. 

AND SYSTEMS OF SINGLE COMPOSITION 

Before discussing the foundations of algebra, a system of double 
composition, we introduce a system of single composition which from 
our standpoint is much simpler. The natural numbers are defined, in 
this section, but symbols such as + and x are not employed in connection 
with them. 

We start with the notion of a set of symbols or marks. We shall 
also refer to them as elements. We then consider some of the properties 
of said symbols that we observe from ordinary experience. As we bring 
up the idea of each symbol in succession in our mind, we shall refer 
to an immediate predecessor of a symbol and an immediate successor 
of it; the first symbol (with no immediate predecessor) and the last 
symbol (with no immediate successor). We illustrate this mental process 
by means of 
(I) a, b, c, d, e, f 

in which we refer to a as the first symbol or element in the set; f is 
the last element; d is the immediate predecessor of e in the set; and 
c is the immediate successor of b in the set. Writing the symbols in 
this manner is quite suggestive of the order of thought we have em- 
ployed. If we had illustrated our process by means of a circular order, 
correspondence is not so clear. In 

a 

(II) f b 

e c 

d 

we would immediately have to define the first term or the first element, 
as a, and f as the last element; otherwise, we would have to consider 
the repetition of elements. This leads to the idea of different symbols 
and the same symbol. In view of these ideas, we shall refer to a set 
of symbols such as 

(III) r, s, r, t, v, s 
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as a set "with repetitions.'" This we can only illustrate by saying 
that a and b are different symbols and a is the same symbol as a.2 
Hence, our writing the symbols on a line suggests all the concepts 
we have talked of, and we will call such a set a set of linearly ordered 
symbols. We refer to (I) or (TII) as a finite (linearly) ordered set 
of symbols. Such a set is non-null and the first term may also be the 
last. Referring to any set of symbols, we shall speak of replacing a 
symbol in it by another or by itself, or of selecting certain symbols 
from a set of symbols. If a set S is such that by taking any symbol 
contained in it and comparing with any other symbol in it (assuming 
it includes another), then said symbols are different, S is said to be 
a set of different symbols, or a set with no repetitions. If we have 
a set S' with an element, say a, and no other, then S' is also said 
to be a set with no repetitions. 

To introduce the ideas of correspondence and counting, we extend 
the notion of ordered sets of symbols by indicating the familiar idea 
in ordinary experience of a set of sets of symbols. Thus, we can speak 
of a; b; c, d, e as a finite linearly ordered set of sets of symbols 
in which the set b is the immediate successor of the set a; c, d, e 
is the immediate successor of the set b, with c, d, e being the last 
set in this set of sets. We consider the symbols 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

known as digits, and the finite linearly ordered set 

(IV) 1, 2, 3, 4, 5, 6, 7, 8, 9. 

The last element in this set is 9, but we may, without using any ex- 
plicit notion of agdition, change the status of this element by intro- 
ducing an immediate successor of 9. To do this we employ the digit 0 
and take as the immediate successor of the set 9 the set 10; as the 
immediate successor of 10, we take 11, and so on, in line with the 
usual decimal representation (not defined here). We shall denote this 
extended set by N.N. From this standpoint we shall refer to any of the 
finite ordered sets in N.N. as a natural number, and we will refer 
to the whole set as the set of natural numbers. The natural numbers 
satisfy the following postulates: 

Postulate I. 1 is a natural number. 
Postulate II. Each natural number has an immediate successor in 

N.N. 
This Postulate II transcends our ordinary experience in connection 

with the symbols in the sense that the set of natural numbers has no 
last term; and here we seem to be introducing a definitely mathematical 

2Note that we are not introducing any idea as yet of the equality or inequality 
of symbols. From our standpoint this will be a much more general idea. We use 
the term "different" here, in place of "distinct," as the latter will be 
used later to indicate unequal symbols. 
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i dea. 
As is usual in algebraic discussions, we shall use the idea ol 

"denoting." We use a symbol to denote a set of symbols, or, in par- 
ticular, a symbol itself; and in any statement made or relation dis- 
cussed here, we may replace any set of symbols by some letter denoting 
it and vice versa. In particular, a symbol may denote itself. However, 
as stated in our introduction, we do not attempt to set up a complete 
set of rules governing denoting. 

We assume we have a set of symbols S. We shall now speak of affixing 
subscripts to symbols, which latter we have already selected; thus, 
we obtain ai from a by affixing a subscript i. Next we will speak of 
affixing an additional subscript, say j, such that we obtain aij, etc. 
Suppose we have a set of symbols and select an element therein. To 
this element we affix the subscript 1, select another element and 
affix the subscript 2, etc., until we have reached a natural number 
denoted by n as a subscript. Further, suppose there is no element of 
our original set onto which we have not affixed a subscript. We then 
say that our original set S is finite and contains n elements. Taking 
any symbol, such as a, we shall say that we may denote the elements 
of S by a,, a2, ..., an. If we have a linearly ordered set of symbols 
with no last term, such as the set of natural numbers, we shall call 
such a set infinite.3 We now assume that all the sets discussed here 
have the property that the elements of any one may be denoted by at, 
a2, a3, ..., where the subscripts range over the set (N.N.) or over 
the set 1, 2, 3, ..., n, where n denotes some natural number. In other 
words, the sets considered by us are denumerable.3 

Sub-sets. Consider a set S1 consisting of the elements a,, where 
i ranges over the set 1, 2, ..., n, n denoting a natural number, or over 
the set of natural numbers (N.N.). Suppose it is possible to select 
from Si in some fashion a set S2 consisting of different symbols, 
then S2 is said to be a sub-set of S,. If there is a natural number 
denoted by k such that ak belongs to S1, but not S2, then S2 is called 
a proper sub-set of S,. Since the elements of any denumerable set can 
be denoted by a set of a' s as above defined, then the definitions 
above apply to any denumerable set of symbols. 

It seems that there are two different notions about enumerating the 
elements of sets with repetitions. Thus, it would appear that somewriters would 
say the set (III) contains four elements, but six elements "counting repeti- 
tions." If we follow out our definition, however, in counting the elements of 
(III), we would obtain a set rl, s2, r3, t4, v5, s6, which also by our defini- 
tion contains six elements. However, it is apparently consistent with our pre- 
vious definitions-to say that (III) contains four different elements. If the 
reader thinks that we are unduly preoccupied with sets having repetitions, we 
wish to point out that most of the sets we talk of in this article contain them. 
Thus, from our standpoint ((a + b) + c) + d is merely a finite ordered set of 
symbols; and we would be in a bad way, as far as our theory is concerned, if 
we could not say that this expression contains two parentheses. 
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Suppose we have a set of symbols Si, whose elements are denoted by 
a,1, a2, .., a., and another set S2, whose elements are denoted by 
bit b2p .... bn. A correspondence or mapping is a rule which determines 
for each element a of S1 an element b. of S2 which is said to correspond 
to ai and such that no different syrmbol in S2 corresponds to ai. Con- 
versely, each element of S2 is the correspondent of at least one symbol 
in S . In particular, the correspondence is said to be one-one when 
ai corresponds to b. but to no different symbol in S2, and bh corresponds 
to ak in S1 and no different symbol in S1. For example, if we have the 
set all, a12, a21, a22 and b1 and b2, we can indicate what we call a 
two-one correspondence which may be written symbolically as 

a11 a21 
1'~~~2 

a12 a22 

If we have a set a1, a2, a3, a and b , b2, b3, b4, then' we may indicate 
a certain one-one correspondence between these two sets by 

aiC :- bi, 

i ranging over 1, 2, 3, 4. Also, the first set is said to be mapped on 
the second and conversely. We employ a similar idea in connection with 
infinite sets. 

In referring to an ordered set, we shall speak of a symbol contained 
in it and then obtaining a type of sub-set by selecting the symbols 
following this in order as they appear in the original set. Thus, we 
may select the element c in (I) and obtain a set by taking the immediate 
successor of c in (I), namely d, and the immediate successor of d, 
namely e, and obtain, if we wish to use e as the last element of one 
set, the set c, d, e. But d, e, a is not a set of this type. 

We now introduce and discuss rather informally a system of single 
composition. Consider a finite set of symbols without repetitions which 
we shall call S. Suppose S contains n elements. Consider another set 
S1 containing n elements which is obtained from S by selecting elements 
in the first set. If S1 contains no repetitions, we call S1 a permutation 
of S and vice versa. Thus bcad is a permutation of abcd. We now introduce 
a symbol 

a b c d 

In order to set up a system of operation with such symbols, we first 
note that we can consider the columns which appear in it. We will state 
that the first symbol is equal to any symbol obtained by interchanging 
the colunms; thus 
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Ca b c d c b a d 
b c a dJ a c b dj 

More generally we set 

a266a a666 ai~ 
a a2 .66 a' [a a. a2 6 al a 2 ... ni1 i2 in 

where each row in each symbol is a permutation of the original elements 
a,, a2, *.., an; and if ai = aj t = 1, 2, ..., n, then a = a]. Let n ~t J'1t 

a a2 a aa, ap a ng a, a2 . a 
2~, It 

1 
11 

.a a2 ..anJ S a a2 T 1an a, a" an 

We call T the product of S1 and S2 and write 

S1S2 = T. 

In the above, as before, each row in each symbol is a permutation of 
al, a2, ..., an. Concerning the equality syinbol, =, it seems reasonable 
to postulate then that if S1 = S2, then S2 = S,; and also S1 = S1. We 
shall call these symbols, such as S1, that we have been using, substitu- 
tions. We note, in particular, there is a substitution 

a2 6 a6 

,.a, a2 a@ an- 

This substitution is called the identity substitution, and we shall 
denote it by I. We note also that if we multiply S1 by 

(a; a2 an 

1 a2 ... an 

we obtain I. The second of these substitutions is called inverse of 
the first, and it is usually denoted by ST. We note also that 

(1) S~S1 =s 2 II 

We write down what we call a product of three substitutions as 
S1S2S3 . We can interpret it as the substitution obtained by taking 
the product S1S2 and taking this resulting product with S This gives 
us the single substitution T1, and we write S1 S2S3 2 ?. Using our 
definitions, we find that if we take the product of S1 times the single 
substitution which equals S2S3 that T1 is also obtained; and we write 
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this result as 

(S1S2)S3 = S1(S2S3). 

This is called the associative law for three substitutions. In view of 
(1), we find that corresponding to any given substitutions S and T, 
there is a substitution S such that 

(2) SSz = To 

and an Sy such that 

(2a) SyS = T. 

In view of this property, the associative law, and the fact that the 
product of any two substitutions is a substitution as well as two 
substitutions being equal or unequal, these conditions being mutually 
exclusive, the set of substitutions on n letters is said to be a group. 
If the properties (2) and (2a) do not necessarily both hold in a set 
of elements which have the other properties mentioned, such a set is 
called a semi-group. The formal definition of a semi-group and group 
in general will appear in a later paper. 

3. 

FOUNDATIONS OF A THEORY OF THE NATURAL 
NUMBERS AND CERTAIN FINITE ARITHMETICS 

In this part we shall develop a set of postulates concerning certain 
symbols in a system, which system will include as special cases not only 
elementary arithmetic but various types of finite arithmetics. One 
of the principal reasons we develop these systems simultaneously is 
to justify the use of the word existence in connection with the use 

.5 of systems of double composition which cannot be embedded in any ring 

4The theory which I shall consider here was developed mainly during 
seminars on abstract algebra and number theory which I gave at the University 
of Texas during the' last 20 years. During this period, I also discussed some 
of the ideas in personal conversations with various mathematicians. As a 
result of this, I am indebted for suggestions and corrections to F. C. Biesele, 
A. Church, J. L. Dorroh, 0. B. Faircloth, H. C. Miller, J. B. Rosser, J. M. 
Slye, W. J. Viavant, and M. W. Weaver. However, none of these individuals 
should be held responsible for any errors or obscurities which appear in this 
paper since the decision to write it in the form in which it now appears was 
entirely my own. 

5These ideas were discussed in part in the following papers by the writer: 
1. "On the Foundations of a Constructive Theory of Discrete and Commutative 

Algebra," Proc. Nat'l. Acad. Sci., Vol. 20, 579-584, 1934. 
2. "Note on a Simple Type of Algebra in which the Cancellation Law of 

Addition does not hold," Bull. Amer. Math. Soc., Vol. 40, 914-920, 1934. 
3. "On the Foundations of a Constructive Theory of Discrete Commutative 

This content downloaded from 128.122.230.148 on Thu, 21 Jan 2016 23:08:34 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


242 MATHEMATICS MAGAZINE (May-June 

(the terms ring and embedded being employed here as usually defined). 
We now consider a set of symbols 

(3) Cis C21 C3 . 

Denote some natural number by k. Then in (3) we define the immediate 
successor of Ck as Ck l, where k' is the immediate successor of k in 
N.N. We shall now introduce in addition to these symbols a symbol + 
(called a plus sign), and x (called a multiplication sign), and (, 
called a left parenthesis symbol, and ), called a right parenthesis 
symbol. We shall define the term combination6 in connection with the 
symbols. 

Definition. Any of the symbols in (3) or any symbol denoting any of 
them is said to be a combination. If A denotes a combination and B 
also, then A + B is said to be a combination, also A, (A) and Ax B. 
A sub-combination of a combination A is a combination consisting 
o f a symbol contained in A or else such a symbol followed by others 
in order as they appear in A. 

Definition. If A denotes a combination, then (A) is called a 
parenthesis enclosed combination. 

Definition. A closed combination C is a combination such that if 
any + sign occurs in it, there is a sub-combination of C which contains 
this + sign, and which is also a parenthesis enclosed combination. 
If a combination contains no plus sign it is said to be closed. 

We introduce a symbol of relation with the combinations, =, called 
equality. In the following statements, each capital letter or capital 
letter primed denotes an arbitrary combination as above described or 
a combination limited in character by the conditions in the statements. 
A small letter denotes an arbitrary natural number, or else a natural 

Algebra," Proc. Nat'l. Acad. Sci., vol. 21, 162-165, 1935. 
4. "On some Simple Types of Semi-Rings," Amer. Math. Monthly, vol. 46, 

22-26, 1939. 
The idea of using the postulate of substitution as employed here was 

defined by the author for semi-rings in his reference last mentioned, p. 26, 
and for semi-groups in "The Elements of a Theory of Abstract Discrete Semi- 
Groups,' Vierteljahrschrift Natur. Gesell., Zurich., v. 46, 121-123, 1940. 
It was also used by Stephen A. Kiss in his book, "Transformations on Lattices 
and Structure of Logic," New York, 1947, for semi-groups ani more general 
systems, and as a concept of logic, as applied to arithmetic by Birkhof'f and 
MacLane, "Survey of Modern Algebra," pp. 3o-31, New York, 1941. From the 
point of view we use here, the substitution postulate is a little complicated 
since we are trying to take strict account of all the parentheses that appear in 
systems of double composition. I imagine that this substitution principle has 
been stated by a number of other authors, but I have not yet noted where. 

61t does not seem to be the usual thing among writers along these lines 
to define combination as we do here. The idea seems to be that if the closure 
law holds, then we can always repl'ace a combination by an element of our set 
which it is equal to. From the theory we are using, however, this does not 
seem possible, as we do not assume the closure law but prove it (Theorems 10 
and 11) by means of our postulates. 
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number limited in character by the conditions in the statement. An 
equality is also called a statement. 

Postulate 1. (Identity) A = A. 
Postulate 2. (Parenthesis) (A) = A.. 
Postulate 3. (Substitution) If A = B and D C, where C denotes a 

sub-combination of B and B' denotes the combination obtained from B 
by putting D in place of C, then B' = A, provided that if C is immed- 
iately preceeded by or immediately succeeded by an x sign in B, then 
C and also D must be closed combinations. 

Postulate 4. (Induction) For each natural number n let there be 
associated a statement denoted by S(n). If S(1) holds and if it follows 
that if S(a) holds, then S(a') holds, where a' is the imnediate successor 
of a in the set of natural numbers, then S(n) holds for each natural 
number n. 

Postulate 5. (Addition) If n denotes a natural number and n' denotes 
the imnediate successor to this number in the set of natural numbers, 
then 

C + C = C i. 
n 1 n 

Postulate 6. (Multiplication) 

Cxa X (Cb + Cl ) = C xCb + C a 

C xC =C a X a 

We may then prove the following (proofs omitted except for Theorems 
6 & 7):7 

Theorem 1. (Symmetry) If A = B, then B = A. 
Theorem 2. (Transitivity) If A = B and B = C, then A = C. 
Theorem 3. (Composition under addition) If A = B and C = D, then 

A + C = B + D. 
Theorem 4. (Composition under multiplication) If A = B and C = Di 

and if each letter denotes a closed combination, then AXC = Bx.D. 
Theorem 5. (General Substitution) If E = F and G = H, where G 

denotes a sub-combination of E, and E' denotes the combinatiLon obtained 

7We may employ as postulates our present Postulates 1, 2, 4, 5, and 6, and 
also employ our present Theorems 1, 2, 3, and 4 in liew of the Postulates 1-6, 
which we have used here. It may be shown that the two sets are equivalent. 

It may be noted that it is often very difficult to verify that a given 
system has the property stated in Postulate 3. To indicate this we might con- 
sider the introduction of the negative integers by means of ordered pairs 
by the usual method. Verification that combinations of these ordered pairs 
of natural numbers satisfy Postulate 3 would appear difficult, if not im- 
possible. However, we shall show elsewhere that using a certain type of 
isomorphism, as applied to the natural numbers only, we may adjoin zero, 
the negative numbers, and the rational fractions. 
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from E by putting H in place of G, then E' = F provided that if G is 
immediately preceded by or immediately succeeded by a x sign in E, then 
G and H must be closed combinations. Similarly, if G is a sub-combination 
of F and F' is obtained from F by putting H in place of G, then E = F' 
with the above mentioned restrictions on G and H. 

Theorem 6. (Commutative law of addition) 

(4) Ca + Cb = Cb + Ca 

Proof: We first show that 

(5) Ca + C1 = C1 + Ca 

We note first that (5) holds for 1 in place of a, since 

Cl + C = CI + CI 

in view of Postulate 1 and the fact that the expressions on each side 
of the equality are combinations. Hence, the first condition in Postulate 
4 is satisfied. Using the second part of Postulate 4, we assume 

Ck + Cl = C1 + Ck; 

and employing Postulate 1 and Theorem 3, we have 

(6) Ck + C1 + C1 =CI + Ck + CI. 

We then note that Ck + C1 is a sub-combination of each of the com- 
binations in (6) by definition. Now introduce Ck + C1 = Ck, by Postulate 
5. We then make a substitution on each side of (6) by Theorem 5, 
employing the last relation, and we have (5) with k' in place of a. 
The relation (4) holds then for 1 in place of b. Assume 

Ca + Ck = Ck + Cas 

The use of Theorem 3 and Postulate 1 gives 

Ca + Ck + C 1 = Ck + Ca + C1 

In view of (5) and Theorem 5, we obtain 

Ca + Ck +1 = Ck + C1 + Ca. 

Whence, by Postulate 5 and ITheorem 5, we find 

+CI =CI + C a k k a 

which by Postulate 4 gives (4). 
Theorem 7. (Associative law of addition). 
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(7) (A + B) + D = A + (B + D). 

Proof: The proof is quite simple because of the character of our 
particular set of postulates. Since A + B + D, A + B, and B + D are 
combinations, then by Postulate 1 we have 

(8) A + B + D = A + B + D; 

and by Postulate 2 we obtain 

A + B = (A + B), and B + D = (B +,D). 

Since both A + B and B + D are sub-combinations of A + B + D, we may 
take (8) and employ two substitutions, using Theorem 5, and obtain (7). 

Theorem 8. (Associative law of multiplication). 

(AxB) xD = Ax (BxD), 

where A, B, and D denote closed combinations.8 
Theorem 9. 

C xC - Cm. I m m 

Theorem 10. (Closure law of addition). If a and b denote given 
natural numbers, then we may obtain a C. such that 

Ca + Cb = Cs, 

where s denotes some natural number. 
Theorem 11. (Closure law of multiplication). With a and b defined 

as in Theorem 10, we may obtain a Ct such that 

C xC - C a b t 

where t denotes some natural number. 
Theorem 12. (Commutative law of multiplication). 

Cm xCn = Cn xCC. 

Theorem 13. (Distributive law). 

8An alternative method for handling the symbols denoting combinations 
would be to mocify a bit the property of denoting we have already mentioned, 
namely, that if any set is denoted by a letter, then we can interchange the 
set or letter in any statement or relation that we consider. We might say 
that the last statemeihu was subject to the restriction that if A denotes some 
combination, then it can be replaced by the combination that it denotes except 
that if A appears in an equation where it is immediately preceded by or 
immediately succeeded by x, then the combination in question must be a closed 
combination. Using the modification just stated, we could have omitted the 
exceptions in the statement of several of the theorems stated above. 
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CaX(Cb + Ck) = CaX.Cb + CXCk 

and 

(Cb + C ) xC. = CbxC + C xC b n u b an a 

We will now discuss informally several types of algebras obtained 
from the C's. 

So far nothing has been said concerning inequality or equality among 
the C's. Let us assume that each element in the set (3) is equal to 
C1, then our algebra of the C's consists of one distinct element, 
namely C1. We have from our postulates for the C's the following: 

Ci + C, =C 

and 

C1 xC1 - C1i 

Now instead of the algebra we just described, suppose we take the 
set (3) and assume that for some natural number, not 1, and denoted 
by m, we have, if m' is the immediate successor of m, 

(9) C C 

but that 

C1 /Ck 

if k denotes a natural number in the set 

2, 3. in,. 

The symbol / reads "is unequal to" and is here introduced in this 
article for the first time. We also assume that either Ca Cb or 
Ca / Gb, for a and b denoting any natural numbers, and that only one 
of these two relations holds. Since, from the above, C1 + CM = C1, we 
obtain immediately by induction on a 

Ca + C =Ca, 

that is, C. acts as a zero element, as defined in elementary algebra, 
in our set under addition. We also have from Theorem 9 

C1 xCR = CR, 

and we easily obtain 

C xC = C xC = C a X a a a 
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by induction on a. Ihis shows that C3 also acts like a zero element 
under multiplication. 

We shall now consider a second type of finite algebra. Again refer 
to the set (3) and assume that 

CC, C3, C,C C6 

are unequal but that C. = C3; then it follows from Postulate 5 

C6 + C1 = C2 + C1I 

Yet, we cannot cancel the C1 's if we use the assumption already referred 
to that any two C's cannot be equal and unequal at the same time. 
The algebra just described is illustrated by the following figure: 

C C C =C C1 C2 3 7 

C6 C4 

C5 

Let Ca indicate the operation of passing over a equal units of 
distance in this figure and assume that Ca = Cb if, and only if, the 
operation designated by Ca brings us to the same point as the operation 
designated by Gb. Then it is clear that C7 = C3, and starting with 
C7 the elements in (3) repeat in cycles, the elements in each cycle 
equaling C3, C4, C5, and C6 in order. There is no element having the 
property of the zero element in this algebra. Also, the cancellation 
law of multiplication does not hold inf general. Further, what corre- 
sponds to division is not always possible. The latter two remarks apply 
also to the algebra previously defined in connection with (9). 

An algebra of a quite different character than any discussed so 
far in this paper may be obtained by considering the following geo- 
metric figure: 

5 0 6 7 

P P 
4 1 

P3 2 

where the line at the top extends indefinitely to the right. Here we 
have PO = P5; yet, 
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p0 + p1 / P5 + pl, 

that is, the composition law of addition does not hold. On the other 
hand, it will be found that the cancellation law of addition holds; 
and it is clear that the associative and commutative laws hold. This 
brings out how important our substitution postulate is. 

Development of the Arithmetic of the Natural Numbers: We now con- 
sider the set (3) again, and resume our formal discussion. Assume that 
Ca = Cb if, and only if, a and b denote the same natural number. On 
the other hand, if a and b do not denote the same natural number, we 
write Ca / Cb. That is, we shall say that the elements in (3) will 
now be assumed distinct. Also, we will now replace in any of the 
relations, we have so far obtained, involving the C's Ck by k so that 
corresponding to 

(10) Ca + Cb Cd 

and 

(11) Ca XCb = Ces 

we have 

(12) a + b = d 

and 

(13) a x b =e, 

and conversely. 
The set (3) and the set of natural numbers as now used are said to 

be isomorphic since there is a one-one (biunique) correspondence 
between Ca and a, which is written 

Ca a 

and the relations (10), (11), (12), and (13) hold. From now on we 
omit the symbol X, and write ax b as ab. We carry over the definition 
of combinations of the C's to corresponding expressions with natural 
numbers replacing the C's. Then we introduce the 

Postulate 7. If a and b denote natural numbers, and if 

a + k = b, 

where k denotes a natural number, then we write 

b > a, and a < b. 

Also if either b > a or a < b, then we may obtain an s such that 

a + s = b, 
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where s denotes a natural number. If e and f denote natural numbers, 
neither = 1, then the statements 

e = f5 e > ft and e < f 

are mutually exclusive, that is, one and just one of these relations 
holds. Also, one and just one of the relations g = 1, g > 1 holds. 

If a and b denote natural numbers, and if we introduce one of the 
three statements 

(14) a > b, a b, and a = b 

and employ it in connection with our postulates and established theorems, 
and derive any two of the relations 

d = e, d > e, d < e, 

where d and e denote natural numbers, this is said to be a contra- 
diction; and the particular one of the three relations (14) which we 
introduced is said to be false. 

We have, if all letters denote natural numbers, 
Theorem 14. If a > b and b > c, then a > c. 
Theorem 15. If a > b and c > d, then a + c > b + d. 
Theorem 16. If a > b and c > d, then ac > bd. 
Theorem 17. If a + c = b 4 c, then a = b. 
Theorem 18. If ac = bc, then a = b. 
In our next article under the present title, we hope to discuss 

the concepts9 and some of the properties of semi-groups and semi-rings, 
and adjoin zero and the negative integers to the set of positive 
integers. 

9Concerning the definition of combination given previously, which employs 
a sort of induction, the combination may be defined directly as follows: 

Definition. Consider a finite linearly ordered set of symbols containing 
only symbols of the following type: symbols (letters) denoting elements in a 
set of symbols described in (3), symbols of conjunction + and X, parenthesis 
symbols ( and ) which will be called a left parenthesis symbol (abbreviated 
L.P.S.) and a right parenthesis symbol (abbreviated B.P.S.), respectively, 
and such that: 

1. It contains at least one symbol denoting an element of (3). 
2. It begins with either a L.P.S. or a symbol denoting an element of (3) 

and ends with either a R.P.S. or a symbol denoting an element of (3). 
3. It has no L.PoS. immediately preceding a symbol other than another 

L.P.S. or a symbol denoting an element of (3) and no R.P.S. immediately pre- 
ceded by a symbol other than an R.P.S. or a symbol denoting an element of (3). 

4. Any two successive symbols denoting elements of (3) are separated by 
just one symbol of conjunction. 

5. There exists in it a one-one correspondence between the set of all 
L.P.S.'s and the set of all R.P.S.'s such that: 

(a) To each L.P.S. there corresponds an B.P.S., which follows it, and 
(b) If either parenthesis symbol of a given pair lies between the 

two parentheses of the second pair, then the other parenthesis of the first 
pair lies between two parentheses of the second pair. 
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The ordered set just described is said to be a combination. Further, if 
we replace any of the symbols denoting elements in the set of symbols described 
in (3), which appear in the combination just mentioned, by symbols denoting 
combinations, the resulting set is also said to be a combination. 

The University of Texas 
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FOUNDATIONS OF OPERATOR MATHEMATICS 

Jerome Hines 

Foreword: 
The fundamental ideas in the theory of operator mathematics were 

originally conceived through certain formal procedures occurring in 
differential equations. Because of the fact that many non-differentiable 
functions are integrable the modern treatment of operators has shifted 
from the differential approach to the integral equation approach. 
Unfortunately, the integral equation approach forces us to abandon 
many powerful generalizing tools offered by the more direct differential 
method. One such tool is the operator equation which relates operators 
without reference to specific operands. Examples of such operators 
are the ordinary sine, cosine, logarithm, derivative, etc. 

The main purpose of this paper is to lay a foundation for the 
algebra and calculus of operators from the differential approach. 
The structure of this approach permits us to define operations upon 
operators. These definitions will arise from similarities between 
operator and ordinary equations. 
1. Operator Equations: 

An operator is the representation of a transformation. An operand 
is that which is transformed. An opus is the result of an operation. 
We shall denote operators by capital letters and operands and opi by 
small letters, except when noted in the context. 

For simple cases it will suffice to indicate operation by following 
the operator by the operand with no sign between them. To show the 
equivalence of Aa and its opus, b, we shall use the equality sign, i.e. 

Aa = b 

This equation means that the result of applying the operator, A, to 
the operand, a, is the opus, b. 

If the operand, a, is any function of a complex variable, say, for 
which Aa and Bb are defined, and 

Aa = b 

and 

Ba = b 

for all a' s, then A is said to be identical to B in the field, S, 
of such complex variables. 

251 
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We shall denote the identity of two operators, A and B, for the 
field, S, by 

1.1 A=~ B 

This equation is called an operator equation since its terms involve 
only symbols on the operator level. Operator equations can be given 
many properties similar to ordinary equations but they do not always 
obey the laws of simple algebra. 
Definition I: 

Given the operators, P and Q, then P ? Q is an operator defined by 
the relation 

(P ? Q)t Pt + Qt (for all t) 

Definition II: 
Given the operators, P and Q, if Qt = r, has meaning, then PQ is 

an operator defined by the relation 

PQt = Pr 

PQ represents successive applications of Q and P, provided Pr has 
meaning. This may be extended to the successive applications of any 
number of operators, e.g. PQRS t denotes the successive applications 
of SY R, Q, and P. We add the convention that if a variable or constant 
appears in the place of an operator in an operator equation with no 
signs between it and its juxtaposed symbols, it shall imply the operation 
of multiplication by that variable or constant. For example, nAB 
implies multiplying the opus of A on b by the variable, n. 
Definition III: 

We define the upper right hand index of any operator, H, by the 
properties 

1.2 H1 = H 

1.3 Ho = I 

and 

1.4 HmF H Hm 

I is generally called the identity operator, where It t. This defini- 
tion includes negative indices if they have an unique existence. It 
irrmediately follows that, for p an integer, HP represents p-successive 
applications of the operator, H. 
Definition IV: 

We define the null operator, Q, by the relation 

Qt 0 (for all t) 
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The following are results of these definitions: 

a) If 

At Bt (for all t) 

then, adding (or subtracting) equal quantities, Et, to both sides of 
the identity gives us 

At ? Et Bt ? Et 

whence, by Definition I, 

1.5 A ? E B ? E 

Thus we can add (or subtract) identical operators to each side of an 
operator equation. 
b) If 

A B 

and At and Bt are of the class, S, then 

.1.6 DA = DB 

where DA and DB mean successive applications of A and D, and B and 
D. Thus we can operate from the left by identical operators on an 
operator equation. 

c) Again, if A B 

and Et is of the class S, then 
s 

1.7 AE = BE 

Thus, operation from the right by identical operators on an operator 
equation is also permissible. 
d) If there exists an operator, B, such that 

BAb = Aob 

= b (for all b) 

then, by equation 1.1, and Definitions II and III, 

1.8 B = A 

i.e. B is the inverse of A. 
e) (AB)-' is an operator such that 

(AB)-'AB S I 

Provided there exists an unique operator (AB)- fulfilling the above 
condition it follows from equation 1.1 and Definition II that 
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1.9 (AB)-1 SB-A-1 

f) From the convention of multipliers in Definition II and the defi- 
nitions of the operators, I and Q, it follows-that the unit and zero 
multipliers, 1 and 0, are given by 

1.10 0 
and 
1.11 I--1 

g) From the above definitions it can also be easily shown that 

1.12 IA A 

and 
1.13 QAS Q 

2. Higher Operator Forms: 

In this section we shall speak of the symbolic formation of new 
operators by the operation of specific operators upon others. Examples 
of these new operators will be clearly defined in terms of simple 
operators in this section but first we must extend our conventions. 
The symbolic operation of the operator, A, upon the operator-operand, 
B, will be denoted by A *B. When A B is defined, then 

2.1 A *Bd .e 

will denote that we apply the operator, A * B, to the operand, d, 
obtaining the opus, e. Generally this will be quite different from 
successive applications of B and A denoted by 

ABd = e 

Further, 
A *BCd = e 

will denote that we apply the operator, C, to the operand, d, and 
then apply the new operator, A B, to its opu.s to obtain the final 
opus, e. For higher operator products we can employ two or more dots 
arranged vertically to indicate intimacy of operation, e.g. 

F G: HJb = c 

denotes that we first apply the operator, J, to, the operand, b. Then 
a new operator is formed by symbolically applying first G to H, then 
F to G: H, and this resulting operator is applied to the opus of J 
on b, the final opus being c. This has an entirely different meaning 
than 

FGHJb = c 

which only signifies successive applications of J, H, G, and F to b 
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giving c. 

Definition V: 
If n is any complex variable, we define 

n -A S nA 

This is the degenerate case where the symbolic operator n A is equiva- 
lent to the successive applications of A 'and n. It follows from defi- 
nition V and equations 1.10 and 1.11 that 

2.2 I A - A 

and 
2.3 Q * A 

In order to build a function theory between operators in one variable 
and a corresponding calculus it will be helpful to construct definitions 
such that ordinary function forms such as log, sin, and cos when treated 
as operators will be considered as independent of the variable in the 
operand. Operators that may in this manner be considered independent 
of the operand-variable will be called functors. Examples of non- 
functor operators are loge, sin, and cos. In the theory of matrices 
the derivative of an operator, A, is given by the expression 

D -A = DA - AD 

This equation might be used as the definition for the symbolic "deriva- 
tive of an operator" except that the derivative of a functor would 
not be equal to the null operator unless it commuted with the derivative. 
Hence we would lose a'much desired parallelism with ordinary calculus, 
where the derivative of a constant is zero. A broader definition of 
the derivative of an operator will be given in the next section which 
includes the above equation as a special case but includes the condition 
that the derivative of a functor is the null operator. 

The following operator notations are convenient: 
S 

2.4 L() =Limit 

2.5 h3xf(x) f(x + h) (for all f(x)) 

2.6 hh x h3x I 

We shall use h8X$ as defined above, as an operator although 8 is not 
a capital letter. 

It follows from Definition I and equations 2.5 and 2.6 that 

hAlf(x)g(x) f(x + h)g(x + h) - f(x)g(x) 

whence from 2.5 
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2 .7 hA f (x )g ( X) -h 8 X [f (X )]h 8 x [g() ( ()gx 

Bear in mind that the dot indicates intimacy of operation, i.e. h8x 
applies only to the function immediately following the dot. hbx [g(x)J 
has meaning since 

hb x [9(X)] h8xg(x) 

Thus 2.7 can be written 

2.8 t \f(x)g(x) -h [ X f(x) g(x) - f(x)g(x) 

We can consider f(x) as a multiplier. It is then an operator. hAXf(x) 
can likewise be interpreted as an operator. Thus, by 1.6 we can consider 
g(x) as the operand on the left side of 2.8. Similarly the right hand 
member of 2.8 contains the operator, h8x [f(x)lh x and the operand, 
g(x). Then by 1.1 we can rewrite 2.8 in the form 

2.9 hAxf(X) = * [f(X)fl - f(x) 

From 2.6 

h x [f(x)] h8 -x [f(x)] f(x) 

or 

h Sx [f(x)] hAx [f(x)] + f(x) 

Substituting for h8 [f(x)] in 2.9 we obtain 

hl\Xf(x) - Vhsx [f(x)] + f(x)l}hx - f(x) 

whence, removing parentheses and rearranging terms, 
S 

2.10 hAx [f(x)Ah3 - hAxf(X) - f(x)h8X + f(x) 

2.10 is a necessary and sufficient condition of 2.6 derived by 
transformations only of the type described in section 1. Therefore if 
our product, f(x)g(x), were formally replaced by Fg(x), where F is an 
operator and g(x) an operand, we could carry through to equatioln 2.10 
without putting any restrictions upon F except that the operators, 
h * F and hx * F, have meaning. 
Definition VI: 

We define hAx F by the relation 

2.11 h 
F 

* hAXhX - (Fh8X - F)h1x 

where hbx ,the inverse of h has the property 
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2.12 ha- f(x) - f(x - h) hx 

Due to the equivalence of 2.6 and 2.11, if FX is an operator containing 
the variable, x, 

2.13 h Ax Fx- Fx+h - FX 

and 
S 

2.14 h F =F 

By 2.5 and 2.11, haX F can be expressed by 

2.15 a , * A F ? 1F + FW'-1 h x h xh x h x 

We must bear in mind that hA XP means successive applications of F 
and hAx whereas hOXF means application of the new operator defined 
by equation 2.11. The same argument applies to h6x* F. 
3. The Derivative of an Operator: 

Consider the classical definition of the derivative: 

3.1 Df(x) Lim f(X + b) - f(x) h-o h 

By 2.4, 2.5, and 2.6 this becomes 

Df(x) 1 hhh Xf(x) 

Whence 

3.2 D Lh hAx 
h 

Definition VII 
We define the derivative of an arbitrary operator, F, by the relation 

3.3 D F (L A) F 

provided F is such an operator that the relation has mleaning. Then 
by 2.1 and Definition V 

D F - (Lh [h0XFhb1 - (Fhbx - F)hax ] 

Lh [hhxFhax - 1(Fa - F)hh; j 

3.4 D F = Lh * h xFh 1 - Lh [(FhX F)h 8 
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Definition VIII: 
An operator, F, is called continuous if 

LhF - Lh * FLh 

for all continuous operands. 
If F and DF are continuous, 3.4 becomes 

D F - Lh [h h Ax Lh (F 
haX)- Lh *'(F h - F)h x'] 

3.6 D F - DLh (F h8X ) - Lh *[(F h - F)ha'j 

8 is continuous. If F is continuous, and Lh F(F X - h x h also 

then 

S ~~~~~( -1 
3.7 D F S DFLh h - - Lh FX F - L * 

But 

L h hx D x 

S 

Thus 3.7 becomes 

D F - DF- Lh '[j(F hx - F)] 

The dot following Lh may be dropped since &(F hX - F) is assumed 

continuous. The equation finally becomes 

3.8 S * F =-DF - L (F h - F) h (F h - F 

Definition IX: 
A linear operator, Al, is defined by 

3.9 Al (a ? b) AIa ? A Ib 

where a and b are permissible operands for Al, and 

S 
3.10 A1n = nA1 
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for all complex numbers, n. 
The derivative of a continuous, linear operator is its differential 

commutator since, by 3.8, 3. 9, and 3.10 

D Al - DA - Lh -(Al h8X - Al) 

I h AI h x 
DA - ALh hA h x 

3.11 D -Al = DAI - AID 

Thus we have defined the derivative of an operator so that it fulfills 
the conditions discussed in section 2. It is easily seen that the 
derivative of a non-linear functor is the null operator, according 
to 3.8. The parallelism between operator calculus and ordinary calculus 
is further borne out by noting that the derivative of a "complex 
function multiplier" is merely the derivative of that function used 
as a multiplier also. 
4. General Series Representation for Operators: 

We define the mean operator, yMx, by the relation 

4.1 Mx f(x) -- f(Y' f(YO) 

If we attempt successive applications of A we obtain indeterminate 

forms. So we define the synbol, by the relation 

4.2 =2 - L( x-) m x 

where L denotes Lim 
(x-Y) 

Then 

m 
2 

f(x) L Lxy) yMx X f(x) 

- L f(x) M[f) f(X 
(X-y) y X X _xo 

_ L 1 [f(y) - f(xo) f(yO) - f(xo) 
(X"y) y _ y - x- x J 

M _f( 1 [f( x) - f(X?) - XDf(x)] 
X Xo XM x) f 

M 2 f(x)- [M f(x) xo Dfx 
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or 
4.3 xMx = x x xMx - x D] 

where D has the meaning of the nth derivative with x replaced by xo 
xo . 

Similarly we define M3 by 
8 2 

4.4 xmi = L(X- Mx xLm(x) 

i.e. 
3 2 

(x-y) y x _ 

- 

- xo 
1Xxo 1 f(x) - -( xDfx) 

=-L m If) -- f(xo) _ Df(x) f(y0) - f(xo) +Df(x)l 
L(X -Y) _ _ _ _ _ _ x + _ _ _ 

_ _ _ _ _ _ _ 0 -0 Y Yo (y - XOP y x0 (yo _ XO )2 Yo _x0 

f(xf) 
- ((xo) - Df(x) x 2f 

(x xx - x) x- x n 

k W -? D2)f(x) 

Substituting the corresponding equation for XM'X into 4. 5, 

X X X -Xx -:jx MX ( 1)! D 1) - - 

Substituting in the above equation with the corresponding equation 
for n and continuing this process, 

Mx ~ _____ - M n - D Ln 

X X x - X X -i1i( x )nL+O 0~~~~~~~ 
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4.6 (x- x )n+I Mn+l ~ (x - x) M 
n 

(x - 0XD 4 .6 (x xO ) xAx -( o)M il-- ! 0 x x 0x x 

But 

M( f(x) f(X0) 
x -x0 

1 
[I -0D01f(x) 

or 

s 1 
4.7 M X __ [I- Do] x x xx xo 0 

Whence, substituting 4.7 in 4.6 and rearranging terms 

s n' ( xox)iX Di 
4.8 I = - 0 0 + (x - x ) x jf+ 

i==O 0. 

We see that this is an operator derivation of the Taylor expansion. 
The operator on the right hand side of 4.8 we shall call the Taylor 
operator of order, n, denoted by Tn. 

Using the symbolic operation of both sides of 4.8 on an operator 
possessing higher derivatives, 

AS n (x - x )LX OD'1 A* A 
4.9 ~A = - 0 0 +(- 0 XolMn-+l A 

By a process similar to the development of equation 4.5 it can be 
shown that the remainder, (x - x )n+1 mn+l A, can be put in the standard 

0 X x 
Newtonian form involving the (n + l)st derivative of the operator, 
A, at some point, x between x and x . If 

S 

4.10 L1 [(x 0 )f+1 Mn . Al = 

n 

Then the operator, A, is expressible by the series 

S 0 (x - x )ix D 
4.11 A = i 0 
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EACH AS AN AI D TO THE STUDY OF THE OTHER 

W. W. Rankin 

We are in session as a group of teachers of mathematics.* This 
being interpreted properly would indicate that we are concerned with 
two aspects of mathematics - greater clarity as to the structure of 
mathematics and its significance in our current living - better artistry 
in classroom performance. At the level of our interest we may think 
of mathematics as dealing with three important ideas: number, quantity, 
and space (form). 

Experience will warrant the postulate that all persons of normal 
intelligence have some interest in: number, quantity, space. I should 
hasten to add though that many soon lose their interest in the formalism 
required in the traditional study of mathematics. 

With nature continuously dramatizing through her periodicities the 
process of counting, it is difficult to understand how it required 
so long for man to develop a number system. The Hindu-Arabic numerals 
along with the place value concept will always rank as a major contri- 
bution to civilization. Europe was struggling along trying to study 
algebra with Roman numerals until the 14th century. 

For the purpose of discussion it might be good at this point to 
build some very thin partitions between: mathematician - scientist - 
industrialist (including business men and engineers). A mathematician 
by virtue of his interests and his methods of work is much concerned 
with the possible orders in which things (or ideas) fit together. Because 
of his trustworthy methods and his fidelity of purpose he enjoys a place 
of esteem wherever precision of thought is of importance. By the manner 
in which he arrives at his conclusions and the meticulous care he 
exercises in arriving at his conclusions he is able to make predictions. 
This makes great savings of time and expense to the scientist and to 
the industrialist. To be sure this adds to his stature and pride. 

A scientist is committed to finding the actual order in which things 
fit together. He is heir to the achievements of the mathematician 
and has added his own developments in measuring. He speaks casually 
of a millionth of an inch, a millionth of a second, and offers to industry 
refinements of measuring which in turn industry passes on to the consumer 
in better and more precise instruments and machines. Scientists have 
just cause to be proud of the many secrets they have coaxed from mother 
nature. The actual order in which things fit together gives to the 

*A talk given, to the Mathematics Institute at U.C.L.A., July 1951. 
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scientist many opportunities to exhibit to laynien his accomplishments. 
Industrialists (inclusing the business men and engineers) are necess- 

arily given to finding the useful order of fitting things together. 
They must fit things together in such a manner that they may sell their 
product at a profit. In turn they are properly called upon to share 
part of this profit as a subsidy to their benefactors - mathematicians 
and scientists - for their contributions to the "know how" of industry. 
Industrialists are in constant contact with the work-a-day world. They 
literally "make the wheels go round". It is they who take our formulas 
and turn them back into arithmetic before producing dividends, engines, 
television sets, etc. It is they who provide our necessities, our 
comforts and our luxuries. If this group chooses to speak of mathema- 
tics as a "tool" we must accept this in the spirit and understanding 
in which this is said, for to them it as a itool" 

The above thin partitions were constructed to get teachers to realize 
that in a class of 30 students, of those who are interested in mathe- 
matics, the interest rnay have varying shades of these three aspects 
of mathematics. 

It is claimed by some that the wheel concept has been man's greatest 
emancipator from hils inherent physical limitations. In human and in 
animal life the essential and natural motion is hinge motion. But slowly 
man discovered he could project himself out of his endowed and restricted 
limitation of hinge motion into circular motion. Here we get a glimpse 
of man in his early efforts to abstract. A little reflection on the 
wheel's place in our present technological society will give some in- 
terest to this idea. 

A new era was ushered into mathematics when Descartes (1637) abstract- 
ed from the wheel (circle) x2 + y2 = R2. It is precisely this abstrac.t 
quality of mathematics that helps to characterize mathematics and we grow 
to feel the pull of its great power to set forth relationships between 
ideas and to set them forth without emotional or economic disturbances. 
These laws of nature, s = YAgt2, x2/a2 + Y2 = 1, y e kx are but 
exhibits of man's abstractions. Countless other exhibits of abstractions 
might be shown. As a matter of psychological considerations I feel that 
more of our abstractions used in the class room should come from in- 
teresting relationships of nature and current life situations. Our 
textbooks need to provide more illustrations of actual and useful 
relationships in the lists of problems. 

The critical thinking which is possible within postulational systems 
has given to man a very just reason to admire his own achievements. 
It also gives him a type of mental security where he can determine the 
restrictions placed upon his knowledge. He can say"I know this is true 
within the limitation of the postulates I have assumred." Some graduate 
work in "Foundations of Mathematics" would serve to strengthen the 
background for teachers in secondary mathematics. On the 'high school 
level and early college work we shall not have opportunity to exhibit 
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much of non-Euclidean geometry or Peano's postulates for arithmetic, 
etc. In the teacher' s mind though they do serve as good examples of 
critical thinking. 

The teacher, if an artist in the classroom must constantly have an 
awareness of the possible - the actual - the useful orders of fitting 
things together. There is always the temptation to be content with the 
useful order. Students are coming up through the high school and on 
through college mathematics with very little appreciation of what the 
significance is of the one-to-one correspondence in mathematics and 
hence fails to observe the relationships between arithmetic - algebra - 

geometry - a lack of power results. 
The function concept has been very well described as the "declaration 

of dependence". Things, ideas, and human affairs seem to be so inex- 
tricably interrelated that we may very properly feel that the function 
concept is the most important idea in the development of mathematics, 
from both the abstract and the concrete points of view. We are inclined 
to treat this as a special topic rather than an all pervasive idea 
running throughout mathematics. Our techniques for treating this im- 
portant concept need to be revised or better still completely reor- 
ganized. It is through the function concept that we are able to abstract 
and express in simple form so many relationships of: number, quantity, 
form. Many of these relationships deal with problems of the daily affairs 
of life. With a moderate amount of understanding of the language of 
mathematics - symbols, graphs, etc. a person can gain a much clearer 
idea of how precisely these relationships do fit together. Under our 
present method of treating this whole idea students do not gain much 
taste for or skill in using to full advantage the function concept. 

Our traditional offering of the function concept to students is 
through the following four methods: (a) verbal statement, (b) equation, 
(c) graph, (d) table. Perhaps 80% of the emphasis is on the (b) equation 
and the manipulative processes involved in the study of equations. 
The story told by a quadratic function is much more instructive than 
the quadratic equation. It may include the quadratic equation. This 
is especially true if the quadratic function is also studied graphically. 
If we ask a student to investigate a quadratic or cubic function - on 
his own resources he has at least a chance to cultivate the "spirit of 
discovery". It is interesting to speculate - what he might learn as 
compared with what he actually does learn in solving numerous quadratic 
equations. In geometry the function concept is not consciously developed 
and hence little power in mathematical analysis is gained in the tradi- 
tional study of geometry. Students grow up to feel that geometric methods 
are totally different from the methods of arithmetic and algebra. A 
common comment from students after completing a course in geometry 
is "I finished geometry in the 10th grade" (a severe criticism of the 
teacher). 

It seems to me that (c) the graph offers the best opportunity to 
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present the function concept as well as many other aspects of mathema- 
tics, and to bring about both a unity and a comprehension of mathematics 
which we are unable to get by the partitioning of mathematics into 
arithmetic, algebra, geometry, trigonometry, etc. The use of the hand 
and the use of the eye offer psychological advantages which we need 
to recognize and evaluate. Students can be trained to abstract many 
relationships from the graph once he has an insight into the meaning 
of a one-to-one correspondence - between arithmetic, algebra, geometry. 
The graph tends to focus with clarity the concepts of number,. quantity 
and form. Indeed the graph does furnish a "royal road to geometry". 
Some of our most difficult concepts such as: ratio, congruence, conti- 
nuity, limit, periodicity find excellent expression in the use of the 
graph. One of the real bottlenecks in the study of mathematics lies 
in the study of three dimensions. Training in drawing three dimensional 
figures and in constructing three dimensional models would serve to make 
the.proposed ideas much clearer, and in turn aid in making the ab- 
stractions desired. Ask a student to graph E = ?/v2, E = destructive 
force of a car M = mass = W/G, v = velocity. Then compare the value 
of E for speeds of 20, 40, 60, 80 m.p.h. This abstraction could aid 
greatly in promoting safe driving. 

The complex numbers rapidly gained acceptance after Wessel (early 
19th century) showed that they could be represented graphically. More 
recently we observe they may be advantageously represented on wire 
models. A student feels much more friendly (a necessary prerequisite 
for satisfactory learning) towards complex numbers when he discovers 
he can "put his finger" on a complex number. The uses of complex numbers 
in physics and electronics and elsewhere when magnitude and direction 
are significant, certainly points the way for more study of complex 
numbers in elementary mathematics. The comw,leteness it offers to many 
ideas of algebra renders greater powers of abstraction. 

Our daily doings are so completely arithmetical that the transition 
into the general from the particular is more difficult than commonly 
thought. Please hear A. N. Whitehead "To see what is general in what 
is particular, and what is permanent in what is transitory is the aim 
of modern science . The use of some adjustable instrument (geometry) 
will aid greatly in establishing the "any",. oncept. We need some very 
simple aids with which we can bring the student to the "moment of 
insight". The model or instrument lingers to hold the attention long 
after the spoken word has slipped away. To some this "moment of insight" 
comes quickly and vividly, to some it comes slowly and often very 
vaguely. Clarity of understanding is closely related to precision of 
statement, and for this reason I feel there should be frequent calls for 
verbal statements. Because of the tempo of current living we must find 
more artistic ways of presenting ideas, and by this I mean to include 
ways and means for more rapid comprehension on the part of students. 
At a recent meeting of our Committee on Coordination of Mathematics 
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with Business and Industry we were told by consultants from industry 
" you must move out beyond black and white and the spoken word, if 
you are to get and hold the attention of your customer". 

May I offer you please the following striking story in symbolic 
form setting forth some of the development of the ratio concept: 

20/60 = 1/3 = .3333... . a/b = tan 0 

(Y2 Yl)/(x2 - xl) = dy/dx 

Here we may view the ratio concept as it evolved through 3000 years. 
The 60 in the denominator of the first fraction is a Babylonian con- 
tribution. They used fractions having only 60 or some multiple of 60 
for the denominators. The second fraction with its 1 in the numerator 
is an Egyptian idea. They used only fractions having 1 in the numerator. 
The decimal fraction idea was largely that of Stevin (1685). The 
remainder of the above story is too well known to relate here. In this 
exhibit we find a close relationship between arithmetic, algebra, 
trigonometry, analytical geometry, and calculus. It is as a silver 
thread running through these subjects. A careful study of the many 
ways devised to avoid fractions would be very beneficial to any teacher 
of mathematics. It would build up a proper type of sumpathy for the 
students who struggle with the ratio concept. As a part of this story 
it should be noted that the dy/dx rode into mathematics on the back 
of geometry as it was applied to the study of motion. By this I mean 
on the back of analytical geometry. There is a tendency to pass lightly 
over this dynamic aspect of mathematics. With this new dy/dx concept 
most of the earlier mathematics was hastily verified and then the 
mathematicians turned to find new worlds to conquer. And verily there 
was a conquest, for more mathematics was learned in the second half of 
the 17th century than had been known in the preceding 3000 years. 
Not only had mathematics found a new way of thinking, but this readily 
became a powerful "tool" for the scientists and the industrialists. 

It will require skill, patience, and artistry on the part of the 
teacher to find which of the many "Teaching aids" are worthwhile and 
how to make proper use of them. At present I should like to advise 
these teaching aids be painted both green and red in order to give 
the "go" and the "stop" signals as to when to use them. It takes real 
skill to abstract from these aids the mathematical principles associated 
with the aids, and until this is done the teacher's job lacks in clever- 
ness and real worth. 

From experience I would like to offer two very simple and quite 
di fferent illustrations of relating number, quantity, and form. 

1. Use a plyboard wheel (about 15 inches in diameter) with a notch 
in the rim to hold a piece of chalk. Boll the wheel along the chalkrail 
against the blackboard. The chalk in the rim of the wheel of course 
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will describe a cycloid. The parametric equations (x = a(O - sin 0) 
and y = a(l - cos 0) can easily be developed after a little trigo- 
nometry has been acquired. For the student in analytical geometry it 
is possible and highly desirable that he obtain a friendly feeling 
for the idea of parameter which he could do here. A more vivid present- 
ation can be done in 10 minutes than can be done in 20 minutes without 
this aid. It is extremely difficult for students to study motion from 
hastily drawn figures on the blackboard. It is easy to repeat the 
motion with an instrument if this seems desirable. 

2. As a second illustration showing the interplay of arithmetic, 
algebra, and geometry I will suggest this simple problem. It is known 
that 3, 4, 5 will form the sides of a right angle triangle. Are there 
other sets of consecutive integers? Algebra suggests that we set down 
such a set as these: n - 1, n, n + 1, applying the Pythagorean theorem 
we have 

(n+ 1)2 = (n -1) +n or n(n - 4) = 0 

n = 4, n 0 (trivial). Thus leading us back to 3, 4, 5. In this clever 
way algebra announces with assurance there is no other set of consecutive 
numbers which will form a right angle triangle. 

One other suggestion, please set, x2 + y2 = r2; now multiply both 
sides by 7/4 giving (T/4)x2 + (iT/4)y2 = (T/4)r2 but with this simple 
operation we show that the area of the circle on the hypotenuse is 
equal to the sum of the areas of the other circles on the other two 
sides of the triangle as diameters. 

Duke University 
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I NF I N I TE SER I ES AND TAYLOR AND 

FOURIER EXPANSIONS 

Robert C. James 

1. Sequences and series of constant terms. One of the most funda- 
mental and important problems of mathematics is that of approximating 
some quantity which can not be exactly evaluated or exactly expressed 
in the desired form. Examples of this are problems of finding an 
approximate decimal representation for an irrational root of an equation, 
evaluating trigonometric functions and logarithms, and evaluating 
definite integrals or solving differential and integral equations which 
are not readily integrable. An approximation has value only if one 
knows how close an approximation it is, while a method of approximation 
is of value only if it will yield as accurate an approximation as 
one may desire. As an example, consider the problem of expressing v/' 
as a decimal. Since (1.4)2 < 2 and (1.5)2 > 2, one can conclude that 
2 = 1.4 with an error of less than .1. Likewise, V/i = 1.41 with an 

error of less than .01. This process yields a sequence of numbers 
a, = 1.4, a2 = 1.41, a3 = 1.414, ... which approaches v/'2 in the sense 
that if one specifies how close an approximation to 7i is desired, 
then each term beyond a certain one will be at least this close to 
v2. For example, if one wishes to evaluate ,/2 with an error of less 
than .00001, then a5 = 1.41421, or any term after a5, will give such 
an evaluation. The number vT has been approximated by various means 
since the problem of computing the circumference of a circle was first 
studied. Some early approximations were very good, others very poor, 
while most of them were given with no determination of their true 
accuracy. Since 7T is defined as the ratio of the circumference of a 
circle to its diameter, the circle C, with unit diameter has a circum- 
ference of length 7T. One of the most elementary methods of approximating 
77 is to approximate the circumference of this circle by the perimeter 
of a regular inscribed polygon. This can be done by use of the formula 
s2n = ['/(1 - 1] -s2, which gives the length s2n of a side of a n 
regular polygon of 2n sides inscribed in C, in terms of the length 
s of a side of a regular polygon of n sides. Since a regular hexagon 
inscribed in C1 has a perimeter p1 = 3 with s6 = V2, a regular polygon 
of 12 sides has a perimeter P2 12 EL(l - V1 - V)1 i = 3.106 
Continuing this gives a sequence p1, P2, p3, e*. of increasing numbers, 
each less than IT. However, it is not easy to show how close an approx- 
imation of ii is given by a certain term of the sequence. One way of 
doing this would be to find the perimeter of circumscribed polygons 
in a similar way, which would give a sequence q,, q2, q3, of 
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decreasing numbers, each greater than mT. If one wants to find a n 
which differs from TT by less than some allowable error E, it would 
then be sufficient to find a Pn differing from the corresponding qn 
by less than E. By use of calculus, one can derive other methods of 
approximating 7T. For example, the sequence s1 = 1, s2 = 1 1/3, 

S3= 1 - 1/3 + 1/5, -. approaches 7T/4. In fact, the error in approx- 
imating 7T/4 by sj is less than 1/(2N + 1) if n > N. This can also be 
expressed symbolically by: 77/4 = 1 - 1/3 + 1/5 - 1/7 + 'r. This 
indicated sum of an infinite number of terms is called an infinite 
series. Another series representation of 7T is given by: 

7T ( 7854 1 
- 

7854 1 

4 lo10 000 545L261, 31 0 )0003 (545,261)3 

1 f(17854 1 

5l(10O5 (545,261)5J 

This means that for any allowable error E there is a number N such 
that if one adds up at least N terms of this series the sum will differ 
from 7T/4 by less than E. For a given E, N can be much smaller for 
the second series than for the first. 

A precise definition of what is meant by the limit of a sequence or 
by the sum of a series is necessary if one is to develop a mathematical 
theory involving these concepts. The following definitions serve this 
purpose, though they merely state in concise mathematical terms the 
intuitive meaning of limit and sum discussed above. 

A sequence a,, a20, * * is said to be convergent if there is a 
number L, called the limit, such that for any e > 0 there is a number 
N for which IL - aj < E if n > N. This is expressed symbolically by 
imnoan = L. 

A series al + a2 + a3 + *. is said to be convergent if there is 
a number S, called the sum, such that for any E > 0 there is a number 
N for which IS - snIj < e if n > N, where s n is the sum of the first 

n terms of the series. This is expressed symbolically by E a =S. 
n=1 n 

The concepts of convergence of a sequence and convergence of a 
series are closely related, the convergence of a series al + a2 + a3 + *n 
being equivalent to the convergence of the sequence of partial sums 

Si s2, , while the convergence of a sequence s1, s2, * 0 is equiv- 
alent to the convergence of the series a, + a2 + , where an= sn - sn-I 
Thus each theorem about convergence of a sequence corresponds to an 
analogous theorem about series, and conversely. For simplicity, only the 
language of series will be used hereafter. 

It is seldom practical to sum the terms of an infinite series to 
prove convergence of the series. Methods such as those given by the 
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theorems discussed below are usually necessary. A striking exception 
is the geometric series a + ar + ar2 + , for which sn = a + ar + *. 
+ arnl = a(l - rr)/(l - r). If Irl < 1, then lim Sn = a/(1 - r). This 
means that the series converges and has the sum a/(1 - r). 

A series a, + a2 + --- of non-negative terms is convergent if the 
sequence of partial sums s,i, s2o f is bounded, that is, if there is 
an upper bound M such that sn < M for each n. Ihe proof of this theorem 
is immediate if it can be shown that there is a least number M such 
that s < M for each n. For if M is the least such number, then the 
terms of the sequence must eventually get arbitrarily close to M. 
In other words, for any E > 0 there is an N such that M E< SN. Since 
the terms of the sequence are non-negative, sn cannot decrease as n 
increases. Hence |M - Sn I < E for each n > N. Thus the proof of this 
theorem is dependent on the fact that a set of numbers which has an 
upper bound has a least upper bound. The latter can be rigorously 
proven only with use of a careful definition of irrational numbers. 
It is one of many ways of characterizing the completeness of the real 
number system - intuitively, that for any series which behaves like a 
convergent series there exists a real number which is the sum. This 
is expressed in another way by the following: 

Cauchy's Theorem. A necessary and sufficient condition for con- 
vergence of a series a, + a2 + ... is that for any E > 0 there is 
an N such that Ia n + an+1 + I+ < E if n > IV and p > 0. 

The necessity of the condition of this theorem is a direct con- 
sequence of the definition of convergence. The sufficiency can be 
established by showing that the sequence of partial sums snp sn+ip *n 
has a greatest lower bound Sn and that the increasing sequence Sl, 
S2 *... has a least upper bound S, which can be shown to be the sum 
of the series. Many other proofs of this fundamental and important 
theorem can be given. The condition of the theorem is sometimes used 
as the definition of convergence, the existence of a sum for the series 
then being proven. 

A series al + a2 + --- is convergent if there is a convergent series 
of non-negative numbers r1 + r2 + -- such that lanj < rn for each n. 
This test for convergence is called the comparison test. It is an 
immediate consequence *of Cauchy's theorem, since 

an +an+1 + an+p IIanI+ Ian+,+ + + lan+pI < rn+ *..+ r 

implies that the series al + a2 + ... satisfies the condition of 
Cauchy's theorem by virtue of this condition being satisfied by the 
series r1 + r2 + . A series al + a2 + 0 is said to be abso lute ly 
convergent if the seri-es |a1l +.l a21 + is convergent. It is clear 
from the comparison test that an absolutely convergent series is 
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convergent. 
If, for some number N, lan+l/an I < r < 1 for some fixed number 

r < 1 and each n > N, then the series Ia,1 + -.- + laN, + rla,I + r2la,I 
+ r3|aN| + * will serve as the comparison series r1 + r2 + * of 

the above comparison test. Thus the series al + a2 + ... is convergent. 

If, for some number N, Ian+l/aI > 1 for each n > N, then lirm an ' 0 

and the series is divergent. These criteria for convergence in terms 
of the behavior of the ratio 1an+1/an| constitute the ratio tes t. 
A more sensitive test of this type can be obtained by analysing the 
case in which lim nan+/aI | 1. This can be done by comparison with 

the series 1 + 1/2P + 1/3P + for which lim an+1/an = 1 and which 

converges if p > 1 and diverges if p < 1. This leads to the result 
that a series a, + a2 + -- is convergent if there is a number p > 1 
and a number N such that Ian+1/anI < 1 - p/n for each n > N; the series 
is divergent if there is a number p < l and a number N such that 
|an+l/an|> 1 > p/n + f(n)/n2 for each n > N, where f(n) is bounded. 

Many other tests for convergence of infinite series could be given. 
2. Ser-ies of variable terms. All of the series of the above 

discussion were series each of whose terms were constants. If x is 
given a particular value in each term of a series ul(x) + u2(x) + **. 
whose terms are functions of a variable x, the, series becomes a series 
of constants and the concept of convergence already discussed is 
applicable. Such a series may converge for certain values of x and 
diverge for other values of x. The sum of the series will be a function 
S(x) of x, whose domain of definition consists of all x for which the 
series has a sum. A series of constants can be used to compute particular 
quantities, such as mu or 1/j. A series of variable terms represents 
a function in a form that is frequently very useful, for example in 
such problems as evaluating integrals and solving differential and 
integral equations. 

(To be concluded in the next issue.) 
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CURRENT PAPERS AND BOOKS 

Edited by 

H. V. Craig 

This department will present comments on papers previously published in the 
MATHEMATICS MAGAZINE, lists of new books, and book reviews. 

In order that errors may be corrected, results extended, and interesting 
aspects further illuminated, comments on published papers in all departments 
are invited. 

Communications intended for this department should be sent in duplicate to 
H. V. Craig, Department of Applied Mathematics, University of Texas, Austin 
12, Texas. 

Introduction to the Theory of Statistics. By Alexander McFarlane 
Mood, McGraw-Hill Book Company, Inc., New York, 1950, XIII + 433 pages, 
$5.00. 

Within the last few years a fairly large number of books have appeared 
on special phases of statistics, but textbooks for college classes 
with a calculus background and commencing the study of mathematical 
statistics have been comparatively few. One of the best of these latter 
is the text under review. It should, therefore, find wide acceptance 
by departments of mathematics wishing to offer a strong course in this 
subject. Mathematical topics beyond elementary calculus are developed 
as needed, for example, a brief discussion of the theory of sets and 
something of the algebra of matrices. No knowledge of probability 
being assumed, the book commences with this subject, which is followed 
by the development of mathematical models that approximate experimental 
situations. Statistical inference and design of experiments are treated 
last. 

As its title implies, the book's emphasis is upon theory. There 
is no discussion of descriptive statistics and few calculation problems 
based on tables of numerical data. Stimulating problems occur at the 
close of each chapter except the first one. While there are more than 
five hundred of these, a few more solved, illustrative problems in the 
text might have been helpful to the weaker student. Ihe problems often 
develop further the theory of the text, for example, correlation is 
treated almost entirely in the problems. No answers to problems are 
given in the text, but a separate answer pamphlet with all answers is 
available. No wrong answers were found in a sample of problems checked. 
Ihe tables'assembled at the back of the book for problem solving and 
for reference, whi'le not numerous, are adequate. Ihey consist of tables 
for the normal, chi-square, Student's t and F distribution functions. 
Mbre references to original sources, given throughout the text, would 
doubtless have been welcome to some readers. There are no footnotes, 
but the references given are accompanied by very pertinent comments. 
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Some other characteristics of the book, chosen rather at random, 
are: new ideas are introduced with concrete examples; emphasis is 
laid on marginal and conditional distributions; expected values are 
used to introduce moments and moment generating functions; a proof 
is given for a restricted form of the theorem that identical moment 
generating functions imply identical densities; deduction of the normal 
approximation to the binomial distribution is excellent; the normal 
-distribution is treated for n variables; the principle of maximum 
likelihood is explained with special clarity; independence of the sample 
mean and sample variance is not assumed but rigorously established 
for normal populations; a thorough exposition of the Neyman-Pearson 
theory of testing hypotheses is given as well as a similar treatment 
of the analysis of variance. 

Each page is numbered and also marked with chapter number and section 
number. This should prove a convenience. There are seventy-four well- 
drawn figures. Some misprints were noted, but they were easily recognized 
as such. Doctor Mood's book is a careful development of the basic 
ideas of modern statistical theory. 

University of Arizona R. F. Graesser 

Brief Course in Analytics. Revised Edition. By M. A. Hill, Jr. 
and J. B. Linker. New York, Henry Holt and Company, 1951. XI + 224 
pages. $2.40. 

This text is a revision of an earlier edition of 1940. The authors 
have replaced some of the problems of the earlier edition and increased 
the number. Each set of problems progresses from the very easy to those 
which are more thought provoking, thus affording a challenge to the 
better student. 

In this edition an introductory chapter of basic formulas, tables 
of logarithms, and natural trigonometric functions have been added. 
The text is small in terms of physical dimensions and is designed for 
a three semester hour course. 

The content of the text does not differ from the traditional one on 
this subject. A claim to uniqueness might be made in the arrangement 
of topics in that some general second degree equations, extent of 
a curve, and translation of axes are studied before taking in detail 
the straight line and conic sections. The reviewer considers this 
arrangement a debatable pedagogical practice. 

McNeese State College W. H. Bradford 
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MISCELLANEOUS NOTES 

Edited by 

Charles K. Robbins 

Articles intended for this department should be sent to Charles K. Robbins, 
Department of Mathematics, Purdue University, Lafayette, Indiana. 

A GEOMETRIC PERPETUAL CALENDAR 

In 1952 we have the two hundredth anniversary of the adoption of 
the Gregorian Calendar by England and her colonies. Perhaps this 
justifies the introduction of a new perpetual calendar, a scheme by 
means of which the day of the week corresponding to a given date can 
be determined. As further justification, we submit that the scheme below 
is easier to remember than other perpetual calendars. Those who disagree 
will no doubt agree, at least, that such schemes emphasize the need 
for calendar reform similar to that achieved by the "World Calendar"', 
a calendar endorsed by the Mathematical Association of America. 

First, a dash of history. The Julian Calendar, first used in 45 B.C., 
initiated a regular leap year. This calendar fitted the seasonal year 
very well for a long time, but by the sixteenth century the two were 
ten days out of phase. Pope Gregory XIII and his astronomers proposed 
that October 4, 1582 be followed by October 15, 1582 and that from 
1582 on there be only 97 leap years every 400 years - the century 
years not divisible by 400 being dropped as leap years. The Gregorian 
Calendar was not used by the American Colonies until 1752. At that 
time there was a difference of 11 days between the "Old Style" and 
the "New Style" calendars. 

We now describe a method for determining the day of the week corres- 
ponding to a given date (say, October 16, 1582). The date splits into 
four parts: the month (October), the day (16), the century (15), and 
the year (82). We graph four letters as shown in the accompanying 
figure: M for month, D for day, C for century, and Y for year. We note 
century 15 refers to the 1500's, not to the 15th century. 

Consider M. March (the first month beginning with M) is placed 
at the origin. The months from April to August zigzag in order from 
(2,0) to (6,4). The months from September to January zigzag in similar 
fashion over the northern edge of M from (0,2) to (4,6). February at 
(6,6) completes the M. (Note the positions of March and September. 
Equinoxiously speaking, we may spring into fall or fall into spring). 
The unduly high ordinates thus given January and February are com- 
pensated for by lower ordinates given these months in the letter Y. 

1For details of this calendar and arguments in favor of its adoption, 
write to "The World Calendar Association, Inc., 630 Fifth Avenue, New 
York 20, New York." 
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Consider D. Days of the month are taken modulo 7. Day 0 is placed 
at the origin. Days 1 to 3 have positions from (0,1) to (0,3), days 
from 4 to 6 have positions from (2,1) to (2,3). 

D F 

- 
_ 

-- 
-.O-S- N.S. y= + r 

o - M Xtt : od. 7 M7 Mod,f Jana& Feb' 
IT A 1~~~~7 18 r 

13~~~~~~~~ 

00' 
Mont h Da? Centurl Year O 

Consider C. Centuries in the Julian Calendar are taken modulo 7. 
Century 15 (the beginning of the end of this calendar) is placed at 
the origin. Centuries 12 to 18 (Old Style) run counterclockwise from 
(0,3) to (3/2,0), dropping by units to century 15 and then moving at 
half speed to the right. Thus, with C as a clock face, century 17 
(Old Style) is at six o'clock, Century 17 (New Style) is at twelve 
o'clock. (Remember this is the century the colonies moved up from the 
old to the new calendar). Centuries in the Gregorian Calendar are 
taken modulo 4. They progress clockwise around C from century 17 to 
century 20 at the point (2,0). There is, of course, a double space 
between the last and the present century in this sequence. 

Consider Y. The year y is taken in the form 4n + r, where r is 
0, 1, 2, or 3. It is placed at the point (n,r) except when the date 
involves January or February. For these months, it is placed at the 
point (n,r') where, for r / 0, r' = r - 1. In general, 0' is -2. In 
the exceptional case, denoted by 00', its value is -1; this is used 
for dates in the Gregorian Calendar where the century-year number is 
divisible by 100 but not by 400. (In other words, 'for the years which 
have r = 0 but which are not leap years)2. 

The actual computation is simple. Each of the four parts of a date 
now corresponds to a point. Each point has as coordinates the components 
of the vector going from the origin to that point. Add these four 
vectors. Dot the sum with the vector (-2,1); that is, multiply the 
first component by -2, the second component by 1, and add. The resulting 
number represents the day of the week modulo 7 where the first day 
of the week, Sunday, corresponds to the number 1, and so on. 

Those to whom the validity of the process is not self-evident may 
verify it by mathematical induction. To remember the process requires 
recalling the vector (-2,1). It helps to remember that (2,1) is the 

2The special treatment given January and February can be avoided by re- 
garding these as terminal months of the previous year. 
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vector corresponding to the present century. Another method is the 
following. The first vector in the product is remembered as "month, 
day, century, year, add", or "MDCYA" , or f(Y). The second vector 
is f(P), or"MDPA" , or "minus deuce comma plus ace" 

We give two examples: 

A. December 7, 1941 was a Sunday since 

(2,6) + (0,0) + (2,1) + (10,1) = (14,8) and 

(14,8) * (-2,1) = -28 + 8 1 (mod. 7). 

B. January 18, 1800 was a Saturday since 

(4,6) + (2,1) + (2,3) + (0,-1) = (8,9) and 

(8, 9) (2,1) = -16 + 9 0 (mod. 7). 

This is the same day as January 7, 1800 (Old Style). As a check, 
(4,6) + (0,0) + (3/2,0) + (0,-2) = (11/2,4) and (11/2,4)'(-2,1)=0 
(mod. 7). 

Washington University Marlow Sholander 

OMEGA 

Cube root of one. Without ever solving the equation x3 = 1 in the 
usual way, we can sport about with the cube roots of 1 in an interest- 
ing manner. Since 1 x 1 x 1 = 1, it is certain that 1 is a cube root 
of itself, but may there not be some other? If 1 has another cube 
root, distinct from 1, let us call it w, omega. Since (w2)3 = W6 
(X3 ) = 12 = 1, it follows that W2 is also a cube root of 1. 

Other cube roots. If we assume that there is another cube root, 
v, (distinct from 1, o, or w2), v3 = 1, and we must have v satisfy the 
equation v3 - 1 = 0. If v is distinct from 1, then v - 1 i 0 and we 
can divide the equation by (v - 1) and obtain the new equation v2 + v 
+ 1 = 0. Again if v is distinct from w, v - X / 0, and we can divide 
this new equation by v - , as follows: 

v-Xo) V2 + v + 1 (X+ (1+) 
v2 - V 

v(1 + 1) + 1 

1 + , + ;2 
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The remainder is the sum of the three roots already considered, and 
the question arises whether this remainder is zero or not. 

The sum of the first three roots. If we put S = 1 + w + w , and 
add the three equations 

S = 1 + X + W2 

Ws = , + <X2 + 1 

co2S = W2 + 1 + c 

we get S2 = 3S, whence either S = 0, or else we can divide by S and 
get S = 3. But if S = 3, 3 = 1 + CO) + W2 and 3co = , + c2 + 1, that 
is 3w = S = 3, whence co 1. So if a) is a root distinct from 1, S 
cannot be 3 and the remainder, 1 + X + W2, must be zero. 

Are there just three roots? The division of vT3 v 1 = 0 by v - I 
and then by v - w, gave v + 1 + w = 0, with no remainder. If to this 
last equation we add a2 on both sides, we get v + 0 = 2 . Hence there 
are not four roots: the only roots of v3 = 1 are 1, w, and a)2. But 
are there three roots, or may a) and w2 be the same root? To show that 
c and w2 are distinct, consider the square of their difference. We 
have (w e 2) 2 = W2 - 2W3 + co4 = W2 - 2 + w = W2 + 1 + w - 3 = 0 - 3. 
Hence co / w2. But we have not yet shown that either co or W2 is distinct 

Is there more than one root? So far we have assumed that cov 1, 
but now we can show that this inequality is valid. For we have the 
two equations 

, -2 = ?iVd 

+ w + 2= o 

Adding and subtracting, we get 

1 + 2w = ti/ i, whence co = /2(-1 ? iv?) 

1 + 2,o2 = Ti/3, whence 02 = Y2(-l T i3) 

Comparing these, we see that although there appear to be two values 
of w, it is a matter of indifference which is taken, the other being 
then c2 

The mutual squares. Not only is Cv2 the square of 'o, but also 
X is the square of a)2. For (w2)2 =4 = (w3)' = (1)C = a). This curious 
property, that each is the square of the other is not possessed by 
any other pair of distinct numbers. For any pair of numbers, m and n, 
each of which is the square of the other, satisfy the equations m2 = n 
and n2 = m, and so n must satisfy the equation n4 - n = 0. Obvious 
factors are (n - 0), (n - 1), and (n2 + n + 1). This third factor 
may be written n2 - (w + w2)n + Wv3, whose factors are obviously (n - ) 
and (n -_ 2). Hence the only solutions are n = O, 1, :; t)2, with 
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m = O, 1, cw2, w. The pairs (0, 0) and (1,1) are extraneous for our 
purpose, and (w,cO2) is the only pair of distinct numbers having the 
mutual square property. 

Tufts College William R. Ransom 
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 PROBLEMS AND QUESTIONS

 Edited by

 C. W. Trigg, Los Angeles City College

 Readers of this department are invited to submit for solution problems
 believed to be new and subject-matter questions that may arise in study, in
 research, or in extra-academic situat:ions. Proposals should be accompanied
 by solutions, when available, and by such information as will assist the
 editor. Ordinarily, problems in well-known textbooks should not be submitted.

 Solutions should be submitted on separate, signed sheets. Figures should
 be drawn in India ink and twice the size desired for reproduction. Readers
 are invited to offer heuristic discussions in addition to formal solutions.

 Send all communications for this department to C. W.. Trigg, Los Angeles
 City Colleges 855 N. Vermont Ave., Los Angeles 29, California.

 PROPOSALS

 133. Proposed by W. R. Talbot, Jefferson City, Missouri.

 If a, b, c and d are used to replace distinct non-zero digits,
 find their values in the equations

 (ca)2+ (ab)2- (cb)2 + (c2)2= (cc)2 + (d)2= (bd)2 + (bc)2.

 134. Proposed by G. W. Courter, Baton Rouge, Louisiana.

 Using the sides of a parallelogram as hypotenuses, isosceles right
 triangles are constructed externally (or internally) to the parallele-
 gram. Show that the vertices of the right angles determine a square.

 135. Proposed by C. S. Ogilvy, Syracuse University.

 A farmer sells p/q of his eggs plus p/q of an egg to his first
 customer, p/q of the remaining eggs plus p/q of an egg to his second

 customer, and so on until all of his eggs have been sold to n customers.
 Determine necessary and sufficient restrictions on p and q and find
 the initial number of eggs, if none are to be broken.

 136. Proposed by Corporal P. B. Beilin, Somewhere in Korea.

 What is the maximum number of spheres of radius r which can be

 placed in a cylindrical can of radius R and height H? (Thought of
 while eating canned pretzel balls.)

 137. Proposed by W. T. Cleagh, Jacksonville, Florida.

 Let N = ?pa i J7pa where the sets pi and pj together con-
 stitute the first n primes and the ak and am are arbitrary positive
 integers. Show that N is a prime if N is less than the square of the
 (n + 1)th prime. For example: (2)2(3)(5)(7)'(11) - (13)(17)(19)
 = 421 < (23)2, so 421 is a prime.

 280
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 138. Proposed by D. Arany, Budapest, Hungary.

 Establish the following identity:

 [(Ap)2 - (AH)2]tan A + L(Bp)2 - (BH)2]tan B + [(Cp)2 _ (CH)2]tan C
 - (PH)2(tan A + tan B + tan C), where P is an arbitrarily chosen

 point in the plane of the triangle ABC and H is the orthocenter
 of ABC.

 139. Proposed by H. J. Hamilton, Pomona College.

 Given a closed, convex curve C, not intersected by the x-axis.
 Let A be the area which C bounds and V the volume of the solid of

 revolution obtained by revolving A about the x-axis. Now V is given
 by each of two integral formulas, one obtained by the "circular disc
 method" of subdividing V and the other by the "cylindrical shell
 method." (See any elementary calculus text.) Reconcile these integrals
 without appealing directly to the concept of volume.

 SOLUTIONS

 Late Solution

 105. M. S. Klamkin, Polytechnic Institute of Brooklyn, New York.

 The sum of Quadratic surds

 74. [Sept. 19501 Proposed by SaTmuel Skolnik, Los Angeles City College.

 Prove that the sum of any finite number of dissimilar pure quadratic
 surds is irrational.

 n

 Solution by the Proposer. We have to prove that E b v/a. is

 irrational, where b. i 0, a / 0, and a. contains no square factor.

 Assume the proposition to be true for n = k. (It is well-known,
 or may easily be shown, that the proposition holds for n = 2.)

 k+i

 Now assume that Z b i/va = r, where r is rational.-Then

 k

 E b.vai 7 r = -b+l a . (1) L=1 kL k1
 Consider the product of all expressions obtainable from

 k

 x- ( bi/a7 - r) ] by keeping the signs of x and r unchanged and
 i=I

 taking every possible arrangement of signs for the terms of 2bif&i.
 In "the resulting polynomial, let c. be the coefficient of /a7. Since
 the polynomial is unchanged if V is replaced by - X7, we have

 Ci =-Ci or = 0. aa u so c= 0, and the product
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 is a polynomial in x of degree 2k with rational coefficients.

 By (1), -bk+l ak+l is also a root of the polynomial, hence bk+l/'k7
 is also a root of the polynomial. This implies that for some two differ-

 k

 ent arrangements of signs, the corresponding values of E b v - r
 j=1

 are equal and opposite in signs. Then we have

 k k -

 ( iiVa_ - r) + (.2: bia- r) 0O

 where Ibiil = Ibi = Ibi. This implies
 k =
 5 (bi + bi ai = 2r, (2)

 where the number of non-vanishing terms (bi + bi)/ is certainly
 not greater than k.

 Case 1. If Irl > 0, then (2) contradicts the induction hypothesis.
 k+1 k+l

 Case 2. If r = 0, then 2 b 0a = ? and ( I bv')2 =0, whence
 i=1 it =1

 k+1 2 ~k+1 k+1
 _ bi ai + 2 2 2 bb b va a (3)
 i=l i i e=i x=1 e a em a

 where the terms such that e = m are excluded from double summation.
 kli

 Now E b2a. > 0, since it is a sum of non-vanishing positive numbers,
 i=l X
 k+i k+i

 so E 2b baa ' 0. Moreover each is a quadratic ir-
 e=1 =1 a

 rational, since ae / a. and neither contains a square factor. Therefore
 (3) is impossible by Case 1.

 Since the assumption that the induction cannot be continued beyond
 n = k has been shown to contradict the induction hypothesis itself, then
 the sum of any finite number of dissimilar pure quadratic surds is
 irrational.

 A Conic Unrolled

 87. [Jan. 1951] Proposed by Leo Moser, Texas Technological College.

 A right circular cone is cut by a plane. Ihe intersection of course
 is a conic. Find the equation of the curve that this conic goes into
 if the cone is unrolled on to a plane. In particular, if the cone
 is a cylinder and the plane cuts the axis of the cylinder at 450, then
 the ellipse formed will unroll into a sine curve.

 Solution by M. S. Klamkin's Sophomore Calculus Class, Polytechnic
 Institute of Brooklyn. Let the equation of the cone in cylindrical
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 coordinates be a2r2 = z2. Cut the cone along its intersection with

 the plane y = 0 and, let that line become the x'-axis. Then the co-
 ordinates of the transform of a point (r, 0, z) on the cone are
 (r', 0'), where

 r= /rZ t = r/1 + a2, and 0' = rO/v'r2 + = d//1 +'a2.

 Now consider the transform of the intersection of the cone with a
 general surface, F(r, 0, z) = 0. The equation of a cylinder with
 elements passing through the intersection curve and parallel to the

 z-axis is F(r, 0, ar) = 0. Thus the equation of the transform curve
 will be

 F( r'l/v 1+ a2, O'vl + a2, ar'//1 + a2) = 0.

 If F(r, 0, z) = 0 is a plane, then

 r(A cos 0 + B sin 0) + Cz + D = 0

 and the transform curve is

 (r ' //1_+a2)(A cos O'/1 + a2 + B sin 0'v/1 + a2 + Ca) + D = 0.

 If we use a cylinder, r = a, instead of the cone, a2r2 z we find
 that the point (r, 0, z) transforms into (x', y' ) where x' = z, and

 y= aO. Thus if the curve of intersection is given by r = a and
 F(r, 0, z) = 0, then upon development the intersection is transformed
 into F(a, y'/a, x') = 0. Now if the intersecting surface is the plane
 r(A cos 0 + B sin 0) + Cz + D= 0, then

 F(a, y'/a, x') a(A cos y'/a + B sin y'/a) + Cx' + D = O,

 which is a sine curve for all plane intersections except when A = B = 0
 or when C = 0.

 Quadrisection of a Triangle

 90. [Jan. 1951] Proposed by D. L. MacKay, Manchester Depot, Vt.

 Triangle ABC is divided into two parts, triangle DBE and quadri-
 lateral ADEC, by the line DE. Construct a line which will bisect

 each of these parts.

 Solution by the Proposer. Let PM cut DE in N with P on A B and
 M on AC. Now the enve-lope of a line PN which bisects a given tri-
 angle DBE is a hyperbola, for setting DN = x, DP = y, we have xy
 = Y2(DB)(DE) = a constant. The center of the hyperbola is D and its
 asymptotes are the indefinite sides DB and DE. Corresponding to the
 vertices B and E we have two other hyperbolas. As P and N traverse
 the perimeter so that PN bisects triangle DBE, the tangency of PN
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 passes from one to another of these hyperbolas when PN coincides
 with one of the medians. [See this MAGAZINE, 24, 167, (Jan. 1951) .]

 Prolong ED to cut CA extended at 0 and set OM= x', ON= y'. Then
 triangle OMN/triangle OEC = x'y'/(OE)(OC) = k, a constant. Hence
 x'y' = k(OE)(OC) = a constant and the envelope of NM is a hyperbola

 having 0 for center and OE and OC as asymptotes.
 Now PM is the common tangent to these two hyperbolas. In general

 the construction of this tangent would involve a fourth degree equation,

 but since the two hyperbolas have a common asymptote, OE, the equation

 is reduced to a quadratic equation.

 Let AD = a, AO = b, DO= c, AB = d, AC = e, DE= f, and AP = x.
 Then DP = x - a and DB = d - a. Since (AM)(AP)/(AB)(AC) = triangle

 APM/triangle ABC = 1/2, we have AM = de/2x. Also, (DP)(DN)/(DB)(DE)
 = triangle DPN/triangle DBE = 1/2, so DN = (d - a)f/2(x - a).

 Now draw PH parallel to ED and cutting CA extended at H. Then

 from AD/AP = AO/AH = DO/PH we obtain AH = bx/a and PH = cx/a. From

 MH/MO= PH/NO, we have

 NO= [(cx/a)(b + de/2x)]/[bx/a + de/2x] = (2bcx2 + cdex)/(2bx2 + ade).

 From DN= NO - DO, we have

 (d - a)f/2(x - a) = (cdex - adec)/(2bx2 + ade), or

 2[bf(d - a)/de - c]x2 + 4acx + a[df - af - 2ac] = 0.

 We obtain AP by constructing the positive root of this equation and
 AM by the construction of de/2x.

 According to D. J. Korteweg, Complete Works of Huynens, 11, 219-225,
 this problem received the attention of Huygens in 1650, 1656 and 1659.

 If in the problem we replace the given line DE by the condition
 that triangle ABC be divided into four eqal parts by two perpendicu-
 lar lines, we have a problem sometimes called the Problem of Leibniz,
 since it is mentioned in one of his works, Nova Algebrae promotio -
 Gerhard's ed. Leibniz, Mathematische Schriften, 7, Halle, 154, (1863).
 It has appeared as an exercise in seven editions of Traite de Geo-
 metrie of Rouche et de Comberousse. It has evoked mrany sterile "solu-
 tions," for the problem cannot be constructed by straight edge and
 compass. - L'Intermediaire des Mathematiciens, 1, 39, 55-62, 135,
 (1894).

 A Curve Dividing a Rectangle

 110. [Sept. 1951] Proposed by H. T. R. Aude, Colgate University.

 (a) Place a unit square with its sides parallel to the coordinate
 axes so that one curve of the family x2y = c will pass through two
 opposite corners and divide the area of the square in the ratio 1:3.
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 (b) Consider the similar problem when the square is replaced by a
 rectangle a by b and the ratio of the division of its area is. the

 proper fraction n: m.

 Solution by Lt. Col. R. E. Horton, Lack land AFB, Texas. In (b)

 let the vertices of the rectangle be (x1, y1 ), (x2.1 y1), (x2, Y2),
 and (xi, Y2 ) where

 X xl = a and y1 Y2 = b. (1)

 Also let the desired curve of the family be- x2y = cl, whereupon

 Y = ci/x12 and Y2 = c1/x22 (2)
 Then we have

 m{ (cl/x2 c /x22)dx = n (c /xI2 c1/x2)dx,
 I Il

 Upon integrating and simplifying we get (x2 x )2(nx2 mx1) = 0

 which leads to the trivial solution x2 = xl and one other, xl = nx2/m.

 With this and equations (1) and (2) we arrive at the solution:

 xi = an/(m - n); Y1 = bm2/(m2 n2); x2 = am/(m-n); Y2=bn2/(m2n2);
 cl = a2bm2n2/(m2 - n2)(m - n)2. Thus the points (x1, y1), (x2, Y2) and

 the curve x2y = a2bm2n2/(m + n)(m - n)3 satisfy the conditions of
 part (b).

 (a) When a = b = 1 = n and m = 3, we have (xi, y,) = (1/2, 9/8),
 (x2, Y2) = (3/2, 1/8-) and x2y = 9/32 is the curve through the two
 points.

 Also solved by W. B. Carver, Cornell University; A. Sisk, Maryville,
 Tenn.; and the proposer.

 The Range of a Projectile

 111. [Sept. 1951] Proposed by P. D. Thomas, U. S. Coast and Geodetic
 Survey, Washington, D.C.

 A projectile is fired at an angle of elevation 0 and with initial
 velocity u. After a time t1 the projectile is at a point P where it
 suddenly receives an added velocity v directed along the tangent to
 the trajectory at P. Find an expression for the range of the projectile
 in terms of 0, u, t l, and v. (Consider gravity as the only force
 acting.)

 Solution by Howard Eves, Champlain College. Let R be the range,

 RI and R2 the horizontal distances travelled by the projectile, in
 times t, and t2, before and after P. Taking the origin at the initial
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 point we have the well-known parametric representation for the first
 part of the trajectory:

 x = ut cos 0, y = ut sin 6 - 4gt2g. (1)

 Let w be the tangential velocity at P (v not yet added). Then from (1)
 we find

 w = [u2 - 2gut1 sin 0 + g2t2]%. (2)

 Also, if ?b is the inclination of vector w, we have

 cos ? = u cos Qlw, sin $ = (u sin 6 - gtl )/w. (3)

 Let h be the height of the projectile at P. Then

 h = ut1sin 0 - Y2gtI. (4)
 We can now calculate t2 (assuming the case where P is before the maximum

 height) as

 t2= {(v + w) sin $ + [(v + w)2sin2$5 + 2gh]P}/g. (5)
 But

 R = R1 + R2 = ut cos 9 + (v + w)t2cos t

 Substituting from (2), (3), (4), (5) we obtain the desired relation.

 This result furnishes a first approximation for problems connected
 with rocket bombs.

 Also solved by Leon Bankoff, Los Angeles, California; Louis
 Berkofsky, Roxbury, Massachusetts; W. B. Carver, Cornell University;

 and the proposer.

 A Nine Digit Square

 112. [Nov. 1951] Proposed by Victor 77hebault, Tennie, Sarthe, France.

 Find a number of the form aaabbbccc which gives, when increased by
 unity, a perfect square of nine digits.

 Solution by T. W. Carlos, Detroit, Michigan. If V2 is to terminate
 in ccd, where d = c + 1, then N has one of the forms lOOk, 250k ? 1,
 250k ? 83, or 500k ? 166. If N2 begins with aaa, then N must fall within
 definite ranges which may be selected from a table of the squares of
 four-digit integers, for example, 10530 to 10590, 14890 to 14940, etc.
 There are only five values o,f N of one of the necessary forms within
 these ranges, namely: 21083, 18251, 18249, 14917, and 10583.

 aaabbbccc = (106 a + 103b + c)(111) = (N + 1)(N - 1). Hence one
 of the factors (N + 1) or (N - 1) is divisible by 37, and one of the
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 factors is divisible by 3. Ihe test for divisibility by 37 eliminates

 the first four of the possible values of N, so that the unique solution
 is

 111999888 = (10583)2 - 1.

 Also solved by Leon Bankoff, Los Angeles, Calif.; Monte Dernham,
 San Francisco, Calif.; Erich Michalup, Caracas, Venezuela; F. L. Miksa,
 Aurora, Ill.; and J. S. Shipman, Laboratory for Electronics, Inc.,
 Boston, Mass.

 Michalup points out that if zero be considered an admissible value
 for a, then 000444888 = (667)2 - 1 and 000111555 = (334)2 _ 1 are
 also solutions.

 Equilateral Triangle in Isogonic Configuration

 113. [Nov. 19511 Prop.osed by Benjamin Greenberg, Brooklyn, N.Y.

 Isosceles triangles with base angles of 30? are constructed ex-
 ternally on the sides of triangle ABC. The third vertices of the,
 isosceles triangles determine an equilateral triangle. Can this be
 proven by pure synthetic geometry without recourse to trigonometry?

 P~~~~~~~~~

 I. Solution by Charles Salkind, Polytechnic Institute of Brooklyn.

 Let the third vertices of the isosceles triangles on AB, BC, CA be
 F, D, E, respectively. On AE, with D'A = DC and D'E = DE, construct
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 triangle D'AE congruent to triangle DCE. Thern angle D'AE = angle DCE
 = angle BCA + 600. Now angle FAE = angle BAC + 600, so angle D'AF
 = 3600 - (angle BCA + angle BAC + 1200) = 3600 - (1800 - angle ABC
 + 1200) = angle ABC + 600 = angle FBD. Draw D'F. Then D'A = DC = DB
 and AF = FB, so triangles D'AF and DBF are congruent. Hence D'F = DF,
 and triangles FDE and FD'E are congruent.

 Angle DEC - angle D'EA and angle DFB - angle D'FA, so angle
 D'ED = angle AEC = 1200 = angle AFB = angle D'FD. Now since triangles
 D'FE and DFE are congruent, angle D'EF = angle DEF -/ angle D'ED

 - 600, and angle D'FE = angle DFE = 'A angle D'FD = 600. Hence angle
 EDF = l80? - angle DEF - angle DFE = 600 and triangle DEE is

 equilateral.

 II. Solution by Leon Bankoff, Los Angeles, California. Let D, \E, F
 denote the vertices of the externally constructed isosceles triangles

 opposite A, B, C, respectively. On FB and BD construct a parallelogram
 with fourth vertex at G. Draw GA, GE and GC. Then angle BD G = angle
 GFB. Now angle BDC = 1200 = angle AFB, hence angle GDC = angle AFG.
 Also, GD = FB = AF and DC = BD = FG, so triangles GDC and AFG are
 congr.ient. Hence GC AG and angle CGD = angle GAF.

 In parallelogram FBDG, angle FGD = 1800 - angle BFG
 = 1800 - (1200 - angle AFG) = 600 + angle AFG. Then angle AGC

 = 3600 - (angle FGA + angle FGD + angle CGD)
 = 3600 - (angle FGA + 600 + angle AFG + angle GAF)
 = 3600 - (600 + 1800) = 1200.

 GC = AG, AE= EC, and GE= GE. Therefore triangles AGE and. CGE
 are congruent. It follows that angle EGC = angle AGE = /2 angle AGC
 = 600 and angle GEC = angle GEA =/2 angle AEC = 600. Then angle GCE
 = 600 = angle GAE and triangles AGE and CGE are equilateral. Hence
 GE = CE and angle GCE = angle AGE. From triangles GDC and AFG,
 angle DCG = angle FGA, so angle DCE = angle FGE. Therefore, since
 DC = FG, triangles DCE and FGE are congruent and DE = FE.

 In like manner it may be shown that FE = ED, whereupon triangle
 FDE is equilateral.

 III. Solution by F. F. Dorsey, South Orange, N.J. On any triangle
 ABC construct externally isosceles triangles ABF, BCD, and CAE
 with base angles of 300. Also, on AB construct an exterior equi-
 lateral triangle ABP and draw CP. Triangles DBF and CBP are similar,
 for BC/BD = BP/BF and angle DBF = angle AB C + 600 = angle CBP.
 Therefore FD/CP = BF/BP. In like manner, triangles EAF and CAP
 are proven similar, and FE/CP = AF/AP = BF/BP = FD/CP, whence FE
 = FD. By the same method, it may be shown that DE F ED. Hence EFD
 is equilateral.

 IV. Solution by W. B. Carver, Cornell University. Let A, B, C be
 the vertices of the given triangle in clockwise order and D, B, C;
 A, E, C; A, B, F, the vertices of the isosceles triangles in counter-
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 clockwise order. Note that F is the center of an equilateral triangle

 constructed externally on AB. Draw the 1200 arc AB of the circle

 with center at F, and with D as center draw the similar arc BC in-
 tersecting the arc AB at Q. Draw the line segments QA, QB, QC. Angle

 AQB = 1200 = angle BQC, hence angle CQA = 1200 and Q lies also on
 the 1200 arc AC with center at E. (This point Q is one of the "iso-
 gonic centers." See R. A. Johnson, Modern Geometry, page 218.) Since
 F and D are both equidistant from B and Q, line FD is perpendicular

 to BQ and similarly lines DE and EF are respectively perpendicular
 to lines CQ and AQ. It follows that angle FDE = 600 = angle DEF

 = angle EFD, whereupon triangle EFD is equilateral.
 The above proof is for the case where all the angles of the triangle

 ABC are less than 1200. The proof has to be slightly modified in an
 obvious way for the case of a triangle with one angle greater than or
 equal to 1200.

 Also solved by Charles Salkind, using methods I, III and IV.

 QUICKIES

 From time to time this department will publish problems which may be solved
 by laborious methods, but which with the proper insight may be disposed of
 with dispatch. Readers are urgei to submit their favorite problems of this
 type, together with the elegant solution and the source, if known.

 Q 61. Multiply 5746320819 by 125. [Submitted by W. C. True.]

 Q 62. Show that if an even number is multiplied by 6, the unit's
 digits of the even number and of the product will be the same. If
 an odd number is multiplied by 6, the unit's digits will differ by 5.
 [Submitted by W. R. Ransom.]

 Q 63. The figure consists of five concentric circles of radii 1, 2, 3,
 4, and 5 inches. The two diameters are mutually perpendicular. Find

 the total shaded area. [Submitted by the Department of Mathematics,
 Woodrow Wilson Junior College, Chicago, Ill.]
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 Q 64. Solve the system: xy /(x + y) = a, xz/(x + z) = b, yz/(y + z)
 = c. [From the 1951 High School Mathematical Contest of the Metro-

 politan New York Section of the Mathematical Association of America.
 By permission.]

 Q 65. Find the sum of the coefficients of the expansion of (x + y)n.
 [Submitted by T. E. Sydnor.]

 Q 66. The axes of symmetry of two 2" right circular cylinders intersect
 at right angles. What volume do the cylinders have in common? [Sub-

 mitted by G. R. Jaffray. ]

 ANSWERS

 *E/CJ91 = (ft/W)C(S/Cl47) = A
 u31U * T3JT3 paqllDsui sil jo Pa1P a3ll ol sl 3jpnbs all jo Pa1P all
 sp 319Mds all jo awnlJOA 31p 0 ST a1wlJOA UOUIUO1 31ql a0U9 *31wlnOA UOUUOa
 a1pl jo aJaids paquiosuI aip jo uoiioas ssojo ail aq 1TTl 3TpIT3 paqTlos
 -UT asolmx a1lnbs e aq TIM suT *uoilco3s pnw 31inbs all oci jTTBipd
 GUIfnTOA 3I JO UOTcI3S SSOJO Aue 13piSUo0 'asopj oaj Aq polluw puooaS

 1SSaT 10o aaj2p pilt{i alI JO TBEuwOuATod
 B Sl PUB1J99U1 3151 u1IM Tsglul. UB JO sflTBA cT3nXw S3ATo BflWJOJ
 spiowustEd alq asouEs 'saiouT oiqno C/9I Jo 9/(0 + j.?7 + O)Z 99 v

 + + + +1 =I uZ U9L 1 IC x TaT

 Utljc+ + Zc z_, + C F'1xu+ Ux = U + X) 'uosuedxa ;a4 uj S9 V

 -aq qv + av)/aqvg = z pup (Ov - zq + qv)/Oqvz = C lBip A1acwwAs
 WOJJ SmOTTOJ jI *(qV - OD + 3q)/q9DZ = x g3OuH 3/1i q/1 + /1 = x/z
 uiBcqo pup 'plTlp ailj cDBlaclqns suoTclnba oMl cSJTJ al jo Wlns al
 WOJA *//1 = C/| + z/| pup 'q/1 = x/l + z/l 'v/1 x x/l + lC/1 1i9 v

 *TTpBJ J1UUT all JO
 ,uapuadapuT sI pup snTpea ja1no 31jc Aq pauIUiaa4p sl B31B aU *s3qouT
 ajenbs ?9961 /z(S) si B p3pls 3ip ualUjI *u1appnb awes all UT
 TBrJ SB3J1 P3PBlS 31j JTB TTiUn sBuTa jIaUUT ali jo lo-p ai4oll *g9 v

 (*Aoq PTO
 aB3A El B JO AjpTU all wIQJ uBljw SBh A.1aAO3STp,, STqL) *S Aq iJajjTp
 scIvup s,qvun IqI S + uO[ = (I + uZ) - 9 x (I +. uZ) a3UTS cIT-Ep s,lTun
 3UIBS 314 3ABI.I clsnu uz pUB 9 xuz Uall 'u(| = - (9 x uz) a3ous *z9 v

 *SLtZ0106Z81L = 8/0006189OU9LS ugll '8/001 = SZI 93uTS 19 V
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